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Abstract

This paper focuses on the Bayesian posterior mean estimates (or Bayes’ estimate)
of the parameter set of Poisson hidden Markov models in which the observation
sequence is generated by a Poisson distribution whose parameter depends on the
underlining discrete-time time-homogeneous Markov chain. Although the most com-
monly used procedures for obtaining parameter estimates for hidden Markov models
are versions of the expectation maximization and Markov chain Monte Carlo ap-
proaches, this paper exhibits an algorithm for calculating the exact posterior mean
estimates which, although still cumbersome, has polynomial rather than exponen-
tial complexity, and is a feasible alternative for use with small scale models and data
sets. This paper also shows simulation results, comparing the posterior mean esti-
mates obtained by this algorithm and the maximum likelihood estimates obtained
by expectation maximization approach.
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1 Introduction

Hidden Markov models (HMMs) are stochastic models in which an underlying
Markov chain, which is ‘hidden’, emits an output sequence that can be ob-
served. The models come in various forms (Ephraim & Merhav, 2002) and are
widely used in diverse areas; for example, traffic modeling, event detection,
inventory control, and precipitation modeling, to name a few. Poisson hidden
Markov models (PHMMs) are one incident of HMMs in which the emission is
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governed by Poisson distributions (MacDonald & Zucchini, 1997; Cooper &
Lipsitch, 2004; Albert, 1991). Various applications using this model exist; for
example, traffic modeling (Heffes & Lucantoni, 1986; Scott & Smyth, 2003),
event detection (Jana & Dey, 2000), and inventory control (Ching, 1997).

The main focus of this paper is on the Bayesian posterior mean estimates
(BPM) as the parameter estimate of PHMM. However, we start with more
general type of HMMs in which the Markov chain is discrete-time and time-
homogeneous, and the observation sequence has probability distributions de-
fined by a function of the observed value. The parameter value of this obser-
vation function depends on the current state. The algorithm described here
applies to any of such HMMs. Then, a specific case, PHMM, will be investi-
gated.

The algorithm described in this paper, which is a result of a continuation of
the study done on the HMMs with a time-homogeneous emission matrix (Mu-
rakami & Taylor, 2006), significantly reduces the computational complexity
in finding the exact BPM; i.e., from exponential (with a naive approach) to
polynomial in the data size, say n. Also, it is a recursive algorithm, which does
not require a full computation to be repeated when an additional observation
is made. Hence, the algorithm makes it possible for us to efficiently compare
and discuss the two different approaches for the parameter estimation, the
BPM and maximum likelihood estimate (MLE).

However, this algorithm does have significant limitations. It is limited to situa-
tions where both state space and observations are discrete. The computational
complexity, although reduced to polynomial complexity in the number of ob-
servations, is still of exponential complexity in the number of states and in
the largest observed value (see the end of Section 3.4 and also Section 5.2 for
details), and in practice the technique is only feasible for small scale prob-
lems. Hence, it is not feasible for many types of HMM applications for which
various methods for the MLE, such as expectation maximization (EM) algo-
rithms (Dempster et al., 1977; Baum et al., 1970; Baum, 1972; Rabiner, 1989)
or approximation methods for the BPM such as Markov chain Monte Carlo
(MCMC) methods (Scott, 2002; Chib, 1996; Robert & Titterington, 1998) are
feasible.

Still, it is interesting to compare the characteristics of MLE and BPM when it
is feasible. Taking advantage of the significant reduction in the computational
complexity, simulations are implemented using the MLE obtained by EM algo-
rithm and the exact BPM for two-state PHMMs with small n and observation
space, and the results show that the stability problem of MLE that is often
found for the applications with a small n (closely related to the well-known
‘overfitting’ problem) does not exist in case for the BPM, as expected. The
simulation results also show some advantages of the BPM especially when
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the state-dependent parameters for the observation functions are close to each
other.

In addition, in another point of view, this algorithm can be considered as a
proof that the computational complexity in n for finding the exact BPM can
be reduced from exponential to polynomial.

As for the flow of this paper, the HMMs studied in this paper are first described
in details in Section 2, and the method, including the algorithm, used to obtain
the BPM is described in Section 3. Finally, we focus on the PHMMs in Section
4, where the formulas for this specific HMMs are given. Various simulation
results and discussions on the results follow in Section 5, where comparisons
are made between estimates obtained by the algorithm for the BPM and
standard EM procedures. Finally, conclusions are presented in Section 6.

2 Hidden Markov Models

Let X1:n = (x1, x2, x3, . . . , xn), xi ∈ ζX , and Y 1:n = (y1, y2, y3, . . . , yn), yu ∈
ζY , be the Markov chain and observation sequences of length n, respectively,
where ζX = {0, 1, 2, . . . , ν − 1} and ζY ⊆ {0, 1, 2, . . . ,∞} for some positive
integer ν.

Consider HMMs, which have the following properties for any positive integer
t:

P
(
xt+1 | Y

1:t, X1:t
)

= P (xt+1 | xt) and

P
(
yt | Y

1:t−1, Y t+1:n, X1:n
)

= P (yt | xt) .

The Markov chain considered in this paper is governed by a ν × ν time-
homogeneous transition matrix A = {aij}, where ν > 1 is any positive integer
and aij are probability constants such that

aij = P (xt+1 = j | xt = i) for i, j ∈ ζX .

As for the probability distribution for the observation sequence, let

fi,λi
(u) = P (yt = u | xt = i) for i ∈ ζX , u ∈ ζY ,

where λi ∈ R is the parameter for the probability distribution function when
the current state is i. Let Λ = {λi}i∈ζX

. Finally, as for the initial state dis-
tribution, let Π defined as Π = {πi} where πi = P (x1 = i), i ∈ ζX . Denote
the set of parameters as θ = {A, Λ, Π}, subject to the normalizing conditions
spelled out in Section 3.
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Note, due to the independence in the conditional probabilities of the HMMs,
we have

P (X1:n, Y 1:n | θ) = πx1

(
n−1∏

t=1

axtxt+1

)(
n∏

t=1

fxt,λxt
(yt)

)
. (1)

3 Bayesian Posterior Mean Estimates

The BPM of the parameter set θ is the expected value of θ given an observation
sequence Y 1:n. Denote the range of θ = {A,Λ,Π} as Θ = {RA,RΛ,RΠ} so
that A is a ν × ν probability matrix under the restriction aii ≥ ai+1,i+1 for
all i ∈ {0, 1, . . . , ν − 2}, to avoid ‘averaging up’ the symmetry (see Section
3.1); Λ is a length-ν vector of real numbers (subject to the restrictions from
fi,λi

(u), i ∈ ζX , u ∈ ζY ); and Π is a length-ν probability vector. Using the
Bayes’ theorem, the expected value of the parameter given an observation
sequence can be expressed as

θ̂ =
∫

θ∈Θ
θP

(
θ | Y 1:n

)
dθ =

∫
θ∈Θ θP (Y 1:n | θ)P (θ)dθ

P (Y 1:n)
.

Taking the marginal distribution over θ in the denominator, then taking the
marginal distribution over X1:n in both the numerator and the denominator,
we get

θ̂ =

∑
X1:n∈Ωn

∫
θ∈Θ θ P (X1:n, Y 1:n | θ)P (θ) dθ

∑
X1:n∈Ωn

∫
θ∈Θ P (X1:n, Y 1:n | θ)P (θ) dθ

, (2)

where Ωt is defined to be the set of all possible values of X1:t for any pos-
itive integer t. Note that this equation involves a separate integral for each
parameter in the set θ; i.e., in the numerator, the integral is actually a set of
integrals, while the denominator gives a real number P (Y 1:n).

In order to rewrite P (X1:n, Y 1:n | θ) in more details, define K(t) = {k
(t)
ij },

i, j ∈ ζX , and L(t) = {l
(t)
iu }, i ∈ ζX , u ∈ ζY , for a positive integer t as follows:

k
(t)
ij = kij

(
X1:t

)
=

t∑

s=2

I{xs−1 = i, xs = j} and (3)

l
(t)
iu = liu

(
X1:t, Y 1:t

)
=

t∑

s=1

I{xs = i, ys = u}. (4)
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Then (1) can also be written as

P (X1:n, Y 1:n | θ) = πx1


 ∏

i,j ∈ ζX

a
kij(X1:n)
ij






∏

i∈ ζX

u∈ ζY

(fi,λi
(u))liu(X1:n, Y 1:n)


 . (5)

It is clear now to see that K(n) and L(n) are complete data sufficient statistics,
which the algorithm seeks.

3.1 Identifiability of HMMs

As for identifiability problem of HMMs, in this paper we only consider so-
called ‘label-switching’ problem, which becomes an issue especially when the
estimate is the BPM. It is due to the symmetries in the probability distribution
space that exist because any permutation of the labels of the states would not
change the likelihood of the observation sequence when the prior is set to be
symmetric (i.e., invariant under the permutation). Many discussions have been
made and various methods have been proposed, usually through the context of
HMMs as an extension of mixture models (Celeux et al., 2000; Stephens, 2000;
Capppé et al., 2005). However, it is beyond the scope of this paper. In this
paper we order the diagonal elements of the transition matrix, which alters the
otherwise symmetric prior (see Appendix A). Although other methods have
been proposed, this works satisfactorily in our applications.

3.2 Base formulas for BPM

In this section the formulas for the BPM that is used for the simulations are
described, mainly to establish the notations. For the sake of simpler expres-
sions, we let πi = 1

ν
for i ∈ ζX , though it is not hard to extend the estimator

also to find the estimate of Π. Assuming independent and uniform prior dis-
tributions as for the parameters for the initial state, from (5), we see that the
integration appearing in the denominator of (2) is in the form

∫

θ∈Θ
P
(
X1:n, Y 1:n | θ

)
P (θ)dθ

=
∫

θ∈Θ
P
(
X1:n | A

)
P
(
Y 1:n | X1:n, Λ

)
P (A,Λ) dθ

=
1

ν
Φ
(
K(n)

)
· Ψ

(
L(n)

)
, (6)

where 1
ν

Φ
(
K(n)

)
is the unconditional distribution of the transition data, ob-

tained by integrating over the prior distribution for the transition probabilities.
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Similarly Ψ
(
L(n)

)
is the conditional distribution of the observation data, ob-

tained by integrating over the prior distribution assuming the state sequence
is known. In other words,

1

ν
Φ
(
K(n)

)
=
∫

A∈RA

P
(
X1:n | A

)
P (A) dA and (7)

Ψ
(
L(n)

)
=
∫

Λ∈RΛ

P
(
Y 1:n | X1:n,Λ

)
P (Λ) dΛ. (8)

Here the counts K(n) and L(n) depends only on X1:n, while the count L(n)

depends on both X1:n and Y 1:n. Similarly, the integration that appears in the
numerator in (2) can also be viewed as products of integrals. They are
∫

θ∈Θ
AP

(
X1:n, Y 1:n | θ

)
P (θ) dθ

=
∫

A∈RA

AP
(
X1:n | A

)
P (A) dA ·

∫

Λ∈RΛ

P
(
Y 1:n | X1:n,Λ

)
P (Λ) dΛ

=
1

ν
Φ̃
(
K(n)

)
Ψ
(
L(n)

)
,

for the transition matrix A and
∫

θ∈Θ
ΛP

(
X1:n, Y 1:n | θ

)
P (θ) dθ

=
∫

A∈RA

P
(
X1:n | A

)
P (A) dA ·

∫

Λ∈RΛ

ΛP
(
Y 1:n | X1:n,Λ

)
P (Λ) dΛ

=
1

ν
Φ
(
K(n)

)
Ψ̃
(
L(n)

)

for the parameters for the observation sequence, where

Φ̃
(
K(n)

)
=
∫

A∈RA

AP
(
X1:n | A

)
P (A) dA and

Ψ̃
(
L(n)

)
=
∫

Λ∈RΛ

ΛP
(
Y 1:n | X1:n,Λ

)
P (Λ) dΛ.

Here Φ̃
(
K(n)

)
is a ν × ν matrix, and Ψ̃

(
L(n)

)
is a length ν vector, while

Φ
(
K(n)

)
and Ψ

(
L(n)

)
are scalars. Now, we can rewrite the BPM (2) as

Â = E
(
A | Y 1:n

)
=

∑
X1:n∈Ωn

Φ̃
(
K(n)

)
Ψ
(
L(n)

)

∑
X1:n∈Ωn

Φ (K(n)) Ψ (L(n))

and

Λ̂ = E
(
Λ | Y 1:n

)
=

∑
X1:n∈Ωn

Φ
(
K(n)

)
Ψ̃
(
L(n)

)

∑
X1:n∈Ωn

Φ (K(n)) Ψ (L(n))
. (9)

But, as for the estimate Â, we see that the only difference between Φ̃(K(n))
and Φ(K(n)) is the extra A inside the integration; i.e., considering Â element-
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wise, to obtain âij = E(aij), we simply need to increment k
(n)
ij ∈ K(n) by one,

due to the extra aij in the integration. So, let Eij denote the ν×ν matrix with
a 1 in entry (i, j) and 0 in every other entry, where the indices of the rows and
columns start from 0 as with A. Thus, since A is a probability matrix, we get
Â = {âij}i,j∈ζX

by letting

âij =

∑
X1:n∈Ωn

Φ
(
K(n) + Eij

)
Ψ
(
L(n)

)

∑
X1:n∈Ωn

Φ (K(n))Ψ (L(n))
for j 6= i− 1 and

âi,i−1 = 1 −
∑

j ∈ ζX , j 6=i−1

âij . (10)

3.3 Partitioning Ωn to get Ω̂n

Now to significantly reduce the computational complexity, the idea is to switch
the summation from over all the possible Markov chain realizations Ωn to over
all the possible complete data sufficient statistics, the counts (K(n), L(n)). For
this, we partition Ωn into equivalent classes with respect to (K(n), L(n)). First,
define an integer ρ = ρ (Y 1:n) as

ρ = max
{
u | u ∈ Y 1:n

}
+ 1. (11)

Here, we are not setting the upper bound for the range ζY but assigning the
label ρ to an integer that exists for finite observed sequences. The algorithm
goes sequentially from time t = 1 to t = n; and rather than going through
distinct Markov sequences, it goes through distinct values of (K(n), L(n)). So,
we define ωt as

ωt =
(
K(t), L(t), x1, xt

)
,

where K(t) = {k
(t)
ij }i,j∈ζX

and L(t) = {l
(t)
iu }i∈ζX , u∈ζY

are as defined in (3) and
(4), and t is any positive integer, 1 ≤ t ≤ n. Here ωt can be viewed as a long
vector of length ν × ν + ν × ρ+ 2, though for the notational convenience the
elements are written in the form of ν × ν and ν × ρ matrices followed by 2
integers.

The key is that, given a particular observation sequence, except for a few
special cases, more than one distinct state sequence X1:t ∈ Ωt corresponds
to the same value of ωt, hence to the same value of Φ

(
K(t)

)
, Ψ

(
L(t)

)
. So,

we first construct the equivalence classes. It is obvious that each Markov se-
quences in Ωt can be labeled and uniquely identified so that we can write
Ωt = {X1:t

1 , X1:t
2 , . . . , X1:t

νt } with no ambiguity (e.g., by writing the states from
left to right then reading it as a number written in base ν). Let M be a
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function such that

M(X1:t, Y 1:t) = ωt;

i.e., M returns the counts made on particular combination of X1:t and Y 1:t

plus the first and the last states. Now we define equivalence classes [ · ] for a
fixed Y 1:t as

[
X1:t

r

]
= {X1:t

s ∈ Ωt | M(X1:t
s , Y 1:t) = M(X1:t

r , Y 1:t)}

for any s, r ∈ {1, 2, . . . , νt}. In other words, X1:t
s and X1:t

r are in the same class
if and only if the counts (K(t), L(t)) and the first and last states are the same.
We want to find the cardinality of the class [X1:t

r ], which is more than one
most of the time. Since the classes are defined via the value of ωt, there is a
one-to-one correspondence between ωt-values in Ω̂t and the equivalence classes
[X1:t

r ]. The notation we now need is for a function that returns the cardinality
of the equivalence class that corresponds to the given ωn. So, again for a fixed
Y 1:t, define a function Ht as

Ht(ωt) =
{
the cardinality of

[
X1:t

r

]
for which M

(
X1:t

r , Y 1:t
)

= ωt

}
.

Furthermore, define Ω̂t as the set of all the possible ωt-values; i.e.,

Ω̂t = {ωt | M (X1:t, Y 1:t) = ωt for some X1:t ∈ Ωt}.

Using Hn(ωn) and Ω̂n, we rewrite the formula for the BPM so that the summa-
tions are not over Ωn but over Ω̂n. From (10) we have a matrix Â = {âij}i,j∈ζX

such that

âij =

∑
ωn∈Ω̂n

Hn(ωn) Φ
(
K(n) + Eij

)
Ψ
(
L(n)

)

∑
ωn∈Ω̂n

Hn(ωn) Φ (K(n))Ψ (L(n))
for j 6= i− 1 and

âi,i−1 = 1 −
∑

j ∈ ζX , j 6=i−1

âij ,

while from (9) we have a vector Λ̂ =
(
λ̂0, λ̂1, . . . , λ̂ν−1

)
such that

Λ̂ =

∑
ωn∈Ω̂n

Hn(ωn) Φ
(
K(n)

)
Ψ̃
(
L(n)

)

∑
ωn∈Ω̂n

Hn(ωn) Φ (K(n)) Ψ (L(n))
, (12)

It is obvious, considering the range of ωn, the size of Ω̂n is polynomial in n

and significantly smaller than the size of Ωn, νn, except for very small values
of n. The next section will show that the computational complexity remains
polynomial in n through an algorithm finding Ω̂n and Hn-values.
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3.4 Algorithm to Find Ω̂n

Algorithm 1 finds Ω̂n and Hn(ωn). It is an extension of the previous ver-
sion (See Murakami and Taylor 2006) after sacrificing rather an insignificant
amount of computational complexity for the simplicity (i.e., we could use a
vector of smaller dimension than ωn to find (K(n), L(n)), as shown for the
two-state case described in Section 3.5).

Starting from t = 1, the sequential algorithm below finds all the values of
Ht(ωt) for all ωt ∈ Ω̂t, t = 1, 2, . . . , n, given an observation sequence Y 1:n. In
each step, it processes an element ωt−1 picked from the set Ω̂t−1, considering
all the possible value of xt and modifying ωt−1 to get ωt for each of the xt-value
so that ωt is logically true when the current xt-value is added to X1:t−1 (Line
6), and put it in the set Ω̂t (here more than one element in Ω̂t−1 often end
up being modified into the same element in Ω̂t), while updating Ht (ωt) each
time by assigning Ht−1 (ωt−1) if ωt is not in Ω̂t yet or by adding Ht−1 (ωt−1)
to it if otherwise (Lines 7 through 10). Note, with a naive approach, an algo-
rithm to find Ω̂n and Hn(ωn) itself could still have exponential computational
complexity in n, which we avoid here.

One minor issue can be taken care of to reduce the complexity a little further.
Let Ω̂t|x1=i be a partition of Ω̂t, i ∈ ζX , such that

Ω̂t|x1=i =
{
ωt ∈ Ω̂t | ωt =

(
K(t), L(t), i, xt

)}
.

Instead of working on all the elements in Ω̂t as described above, we could
just work on the elements in Ω̂t|x1=0 instead, which can be achieved by just
putting ω1 that corresponds to the case X1:1 = x1 = 0 and no other elements
into Ω̂1|x1=0 (Line 1). It is because once we find Ω̂n|x1=0 and all the corre-
sponding Hn-values, we can find the rest (Ω̂n|x1=i for all i > 0, i ∈ ζX , and
the corresponding Hn-values) by interchanging every 0 and i that appear in
the subscripts representing a state, in a way described below.

Let ψ(ωn, i) be the ωn-value that is obtained from ωn ∈ Ω̂1|x1=0 by interchang-
ing the states 0 and i, where i ∈ ζX \{0}. This ψ(ωn, i) can be described using
three functions ψ

K
, ψ

L
, and ψx defined as follows. With the row and column

indices starting at 0, let ψ
K
(K, i) be the matrix that is obtained by inter-

changing the i-th row with the 0-th row and the i-th column with the 0-th
column of a ν × ν matrix K given, let ψ

L
(L, i) be the matrix that is obtained

by interchanging the i-th row with the 0-th row of a ν × ρ matrix L given,
and let ψx(x, i) be 0 if x = i, i if x = 0, and x if otherwise for x ∈ ζX . Finally,
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define ψ(ωn, i) on ωn = (K(n), L(n), 0, xn) ∈ Ω̂n|x1=0 and i ∈ ζX \ {0} as

ψ(ωn, i) = ψ
(
(K(n), L(n), 0, xn), i

)

=
(
ψ

K

(
K(n), i

)
, ψ

L

(
L(n), i

)
, i, ψx(xn, i)

)
;

Then, for any ωn ∈ Ω̂n|x1=0 and any i ∈ ζ \ {0}, we have

ψ(ωn, i) ∈ Ω̂n|x1=i and Hn(ψ(ωn, i)) = Hn(ωn).

Algorithm 1 Find Ω̂n|x1=0 and its Hn-values.

Require: E
(m1, m2)
ij is the m1 × m2 matrix with a 1 in entry (i, j) and 0 in

every other entry, counting the rows and columns from 0.
1: let H1(ω1) = 1 and Ω̂1|x1=0 = {ω1}, where ω1 = (K(1), L(1), x1, x1) =

(K0, E
(ν,ρ)
0,yt

, 0, 0), and K0 is a ν × ν zero matrix
2: for t = 2 to n do

3: let Ω̂t|x1=0 be an empty set
4: for all ωt−1 such that ωt−1 = (K(t−1), L(t−1), 0, xt−1) ∈ Ω̂t−1|x1=0 do

5: for all i such that i ∈ ζX do

6: let ωt = (K(t−1) + E
(ν,ν)
xt−1,i, L

(t−1) + E
(ν,ρ)
i,yt

, 0, i)

7: if ωt is not in Ω̂t|x1=0 yet then

8: let Ht(ωt) = Ht−1(ωt−1), and put ωt in Ω̂t|x1=0

9: else

10: let Ht(ωt) = Ht(ωt) + Ht−1(ωt−1)

We see the upper bound for the complexity is at most cnν(ν+ρ)+3 for some
constant c; i.e., the computational complexity is polynomial in n, while expo-
nential in ν and ρ. As for the actual complexity, which depends on Y 1:n, some
examples are given in Section 5.2, indicating an extremely small c.

3.5 2 × 2 chain

In this section we describe the algorithm for the case the state space size ν = 2,
which can be, of course, obtained by simply substituting ν by 2 in Algorithm
1. However, because of identities that exist among the elements in ωt, for any
ν, we could find the sufficient statistics (K(n), L(n)) using a ‘smaller sized ωt’
and modifying Algorithm 1 accordingly (Murakami & Taylor, 2006). Although,
with a very large ν, both the identities and the modified algorithm become
rather complicated and hence not recommended to be used, with ν = 2 it is
relatively easy to implement as shown below.

10



In place of ωt = (K(t), L(t), x1, xt) we use ω̃t, which consists of minimal data
necessary to obtain ωt but is in smaller size than ωt, where ω̃t is defined as

ω̃t =
(
k

(t)
1 , k

(t)
11 , L

(t)
ρ−1, x1, xt

)
,

while we let, for i ∈ {0, 1},

k
(t)
i =

t∑

s=1

I
{
xs = i, xs ∈ X1:t

}
, (13)

l(t)u =
t∑

s=1

I
{
ys = u, ys ∈ T 1:t

}
, and (14)

L
(t)
ρ−1 =

(
l
(t)
11 , l

(t)
12 , . . . , l

(t)
1,ρ−1

)
. (15)

The vector L
(t)
ρ−1 is just L(t) without the first (or 0-th) row and column, and

ω̃t is a vector of length 2 + (ρ − 1) + 2 = ρ + 3. Now ω̃t has the minimal
information necessary to find (K(n), L(n)) and also to carry out the algorithm.
(Note l(n)

u -values are fixed once a particular Y 1:n is given.) The identities below

show how (K(n), L(n)) can be obtained from ω̃n. Letting kij = k
(n)
ij , liu = l

(n)
iu ,

k1 = k
(n)
1 , and lu = l(n)

u , and for i, j ∈ {0, 1} and u ∈ ζY \ {0},

k10 = k1 − k11 − xn, k01 = k1 − k11 − x1,

k00 = n− 1 − k10 − k01 − k11(= n− 1 − 2k1 + k11 + x1 + xn),

l10 = k1 −
ρ−1∑

u=1

l1u, l0u = lu − l1u, and l00 = n−
ρ−1∑

u=1

lu − l10.

Abusing the notation a little for easier comparison, we keep Ω̃n as the range
of ω̃t (not of ωt), given a particular Y 1:n. As before, to obtain Ω̂n|x1=1 out of
Ω̂n|x1=0, we simply interchange the states 0 and 1 as described below.

Using the identities above, define ψk11
, ψLρ−1

, and ψx as

ψk11
(k1, k11, xn) = n− 1 − 2k1 + k11 + xn,

ψLρ−1
(Lρ−1) = (l1, l2, . . . , lρ−1) − Lρ−1, and

ψx(x) =





1 if x = 0

0 if x = 1.

Then, define ψ on Ω̂n|x1=0 as

ψ(k1, k11, Lρ−1, 0, xn) =
(
n− k1, ψk11

(k1, k11, xn), ψLρ−1
(Lρ−1), 1, ψx(xn)

)
.

Now, for any ω̃n =
(
k

(n)
1 , k

(n)
11 , L

(n)
ρ−1, 0, xn

)
∈ Ω̂n|x1=0, we have

ψ(ω̃n) ∈ Ω̂n|x1=1 and Hn (ψ(ω̃n)) = Hn(ω̃n).
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Algorithm 2 shows how it is done if ω̃t is used instead of ωt. The vector Vu

defined in the algorithm corresponds to E
(2,ρ)
iu in Algorithm 1. Note the value

i ∈ {0, 1} for the state xt is also used as a delta function in Line 6, which

corresponds to E
(ν,ν)
xt−1,i and E

(ν,ρ)
i,yt

, ν = 2, in Algorithm 1.

Algorithm 2 Find Ω̂n|x1=0 and its Hn-values for ν = 2 (previous version).

Require: Vu is the length ρ− 1 vector with u-th entry 1 and 0 in every other
entry, counting the entries from 1.

1: let H1(ω̃1) = 1 and Ω̂1|x1=0 = {ω̃1}, where ω̃1 =
(
k

(1)
1 , k

(1)
11 , L

(1)
ρ−1, 0, x1

)
is

a length-ρ+ 3 zero vector
2: for t = 2 to n do

3: let Ω̂t|x1=0 be an empty set

4: for all ω̃t−1 such that ω̃t−1 =
(
k

(t−1)
1 , k

(t−1)
11 , L

(t−1)
ρ−1 , 0, xt−1

)
∈

Ω̂t−1|x1=0 do

5: for all i such that i ∈ {0, 1} do

6: let ω̃t =
(
k

(t−1)
1 + i, k

(t−1)
11 + xt−1 · i, L

(t−1)
ρ−1 + Vyt · i, 0, i

)

7: if ω̃t is not in Ω̂t|x1=0 yet then

8: let Ht(ω̃t) = Ht−1(ω̃t−1), and put ω̃t in Ω̂t|x1=0

9: else

10: let Ht(ω̃t) = Ht(ω̃t) + Ht−1(ω̃t−1)

As for the integration over A, after replacing the elements of D in Φ
D

(D) that
appears in Equations (A.1) and (A.2a) through (A.2h) in Appendix A with

the corresponding kij, we find Φ
(
K(n)

)
as

Φ
(
K(n)

)
=

k10∑

i=0

(−1)ik10!

i!(k10 − i)!(k11 + i+ 1)
·
(k00 + k11 + i+ 1)! k01!

(n− k10 + i+ 1)!
.

In the above, the identity
∑1

i=0

∑1
j=0 kij = n−1 is used to simplify the second

denominator. Define

φ
(
i, K(n)

)
=

(−1)ik10!

i!(k10 − i)!(k11 + i+ 1)
·
(k00 + k11 + i+ 1)! k01!

(n− k10 + i+ 1)!

so that Φ
(
K(n)

)
=
∑k10

i=0 φ
(
i, K(n)

)
. By incrementing the corresponding ex-

ponent kij for âij by 1, we get the estimates as shown below.

â00 =
1

2P (Y 1:n)

∑

ω̃n∈Ω̂n

Hn(ω̃n)




k10∑

i=0

k00 + k11 + i+ 2

n− k10 + i+ 2
φ
(
i, K(n)

)

Ψ
(
L(n)

)
and

â11 =
1

2P (Y 1:n)

∑

ω̃n∈Ω̂n

Hn(ω̃n)




k10∑

i=0

k11 + i+ 1

k11 + i+ 2

k00 + k11 + i+ 2

n− k10 + i+ 2
φ
(
i, K(n)

)



· Ψ
(
L(n)

)
,
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where P (Y 1:n) =
1

2

∑
ω̃n∈Ω̂n

Hn(ω̃n) Φ(K(n)) Ψ
(
L(n)

)
. Note, Eij used in (10) is

not used in these equations because we rather want to utilize φ
(
i, K(n)

)
-values

that are already found for P (Y 1:n).

4 Poisson Hidden Markov Models

Consider a discrete-time HMM such that the observation sequence is governed
by Poisson distributions with parameter values depending on the current state.
Let fi,λi

(u) be the density functions such that, for i ∈ ζX and u ∈ ζY =
{0, 1, . . . ,∞},

fi,λi
(u) =

λu
i e

−λi

u!
= P (yt = u | xt = i) for any integer t > 0,

and let Λ = {λi}i∈ζX
; i.e., the Poisson parameter depends on the current state.

4.1 Bayesian Posterior Mean Estimates for PHMM

As for the integration over A, refer to Appendix A. As for the integration
over Λ, since the symmetry in the distribution is already taken care of in the
integration over A, it is simply over the entire domain of Λ. So, Ψ

(
L(n)

)
in

(6) can be rewritten as a product of integrals. As for the prior P (Λ), in this
paper, we choose independent gamma distributions for each parameter; i.e.,

P (Λ) =
∏

i∈ζX

P (λi) where

P (λi) = f(λi;αi, βi) =
β αi

i

Γ(αi)
λαi−1

i e−βiλi.

Other types of prior distributions could be chosen here with minor modifica-
tions on the formula shown below, accordingly. With ki = k

(n)
i , lu = l(n)

u , and

liu = l
(n)
iu as defined in (13), (14), and (4), respectively, we have

Ψ
(
L(n)

)
=

∏

i∈ ζX



∫ ∞

0

∏

u∈ ζY

(
λu

i e
−λi

u!

)liu
(
β αi

i

Γ(αi)
λαi−1

i e−βiλi

)
dλi




=
N0

N1

∏

i∈ ζX

∫ ∞

0
λN2i−1

i exp (−N3iλi) dλi

=
N0

N1

ν−1∏

i=0

Γ(N2i)

NN2i

3i

,
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where

N0 =
∏

i∈ ζX

β αi

i

Γ(αi)
, N1 =

∏

u∈ ζY

(u!)lu , N2i = αi +
∑

u∈ ζY

u liu, and

N3i = βi + ki. (16)

As for N1, N2i and N3i, if u does not appear in Y 1:n, we have liu = 0; so,
disregarding the factors and/or terms that involve such zero-valued liu will
have no effect on the final values of these three. So, in above the multiplications
and/or summations that are over ζY in N1, N2i, and N3i are actually over the
finite subset {0, 1, . . . , ρ − 1} ⊂ ζY , where ρ = max {u | u ∈ Y 1:n} + 1 is as
defined in (11).

Regarding the estimate of λi, multiplying an extra λi inside the integral of
Ψ
(
L(n)

)
will result only in increasing the value of N2i by 1. Hence, Ψ̃

(
L(n)

)
in

(12) is a length-ν vector such that the i-th element, say Ψ̃i

(
L(n)

)
, is obtained

by

Ψ̃i

(
L(n)

)
=
N2i

N3i

· Ψ
(
L(n)

)
, (17)

and this Ψ̃i

(
L(n)

)
is used to obtain the estimate of λi as

λ̂i =

∑
ωn∈Ω̂n

Hn(ωn) Φ
(
K(n)

)
Ψ̃i

(
L(n)

)

∑
ωn∈Ω̂n

Hn(ωn) Φ (K(n))Ψ (L(n))
,

where Φ
(
K(n)

)
is as shown in Appendix A.

As for the values of Hn(ωn) and the estimates for the transition matrix A, see
Sections 3.3 and 3.4.

4.2 2 × 2 Chain for PHMM

For the case ν = 2, we have Λ = {λ1, λ2}. As for the BPM for Λ, from (16),
we get

Ψ
(
L(n)

)
=
N0

N1

Γ(N20)

NN20

30

Γ(N21)

NN21

31

.

where N0, N1, N2i, and N3i, i = 0, 1, are as defined also in (16). Also, Ψ̃
(
L(n)

)

is now
(
Ψ̃0(L

(n)), Ψ̃1(L
(n))

)
and can be obtained by (17) above. As for the

values of Hn(ωn) and the estimates for the transition matrix A, see Section
3.5.
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5 Results

One of the well-known problems of the MLE occurs when the estimate θ̂

that maximizes the likelihood, given a particular observation sequence, is not
necessarily close to the true parameter set θ especially when the data size is
small. In order to consider a similar problem in the MLE for PHMMs, root
mean square errors for the MLE and BPM are obtained in the way described
below. In addition, to approximate the computational complexity of the BPM,
the distribution of the size of Ω̂n is shown by simulations.

Since up to 1200 estimations are to be computed for each, to make the simula-
tions feasible for the algorithm, only λ0- and λ1-values such that 0 < λ0, λ1 ≤ 3
are considered hereafter.

As for the BPM, for all i, j ∈ {0, 1}, the parameter values for the prior P (Λ)
are set as αi = 1.5 and βi = 0.5 (see Section 4.1), while the parameter values
for the prior P (A) are set as γij = 1 (see Appendix A).

As for the MLE, an EM algorithm (Dempster et al., 1977) obtained by a mi-
nor modification to the standard Baum-Welch algorithm (Baum et al., 1970;
Baum, 1972; Rabiner, 1989) is used in the following way: first obtain 15 esti-
mates (or fixed points) using 15 randomly picked initial estimates, then choose
the estimate that gives the highest likelihood as the final estimate. In case
more than one give similar likelihood, choose the one with the largest basin
of convergence as the final estimate.

It is a well-known limitation of the Baum-Welch algorithm that the algorithm
is not guaranteed to find the estimate that gives the absolute maximum and
has a dependency on the initial estimate, which also applies to this modified
version. However, empirically we see that the smaller the data size is, the
smoother the likelihood surface hence the larger basins of conversion. With
n and the number of initial estimates used for the simulation, the EM esti-
mates obtained are highly likely the MLE most of the time, and an increase
in the number of initial estimates from 15 did not noticeably changed the
outcome. (As a reference for the EM method used here, with the data size
n = 1000, using randomly generated 1000 PHMMs, the root mean square er-
rors in (a00, a11, λ0, λ1) had the mean 0.40, the median 0.20, and the variance
0.47, while the best estimations were obtained when |λ0 − λ1| ∈ (2, 3] and
det(A) ∈ [−1,−0.8], with the mean 0.07, the median 0.07, and the variance
0.05.)
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5.1 Root Mean Square Errors w.r.t. |λ0 − λ1| and the Determinant of A

The range of |λ0 −λ1|, which is set as [0, 3] for simulations, is partitioned into
three subintervals: [0, 1], (1, 2], and (2, 3]. Then, for each subintervals, 400 θ-
values are picked randomly with respect to both |λ0−λ1| and the determinant
of A. Using each of these θ-values, an observation sequence of length n = 30
is generated and two estimates, the MLE and BPM, are found.

A similar experiment is implemented again but with three subintervals of the
determinant of A: [−1,−0.8], [−0.1, 0.1], and [0.8, 1] (which obviously do not
sum up to the entire range, [−1, 1], but are chosen simply to emphasize the
difference). The interval [−1,−0.8] is for the case both a00 and a11 are very
small, resulting in quickly alternating state sequences. The interval [−0.1, 0.1]
is for the opposite case, both a00 and a11 are close to 1; the state tends to
stay the same a long time before switching to the other. Finally, the interval
[0.8, 1] is for the case a0j ≈ a1j , j ∈ {0, 1}; i.e., the current state does not have
much effect on the probability distribution for the next states. For example,
if a00 ≈ a10 ≈ 1 then the state sequence stays in 0 most of the time, with
occasional rare appearances of a single 1. On the other hand, if a00 ≈ a10 ≈ 0.5,
the sequence alternates almost randomly. Again, 400 θ-values are randomly
picked for each interval so that it is uniformly distributed with respect to
|λ0 − λ1| and to each of the subintervals of det(A). (Incidentally, additional
estimates are obtained for the scatter plot, which covers the entire range of
det(A).)

Thus, in total 400× 3 = 1200 PHMMs are generated for each simulation, and
Figs. 1(a) and 1(b) show the results regarding the effect of |λ0−λ1| and det(A)
on the root mean square errors in (a00, a11, λ0, λ1), respectively. The scatter
plots are for 150 pairs of estimates in total, while the boxplots are for 400 pair
of estimates per box. A few outliers are out of the frame for better views.

We can see some correlation in each of the plots; however, the correlations get
a little more obvious if we plot the root mean square errors in (λ0, λ1) against
|λ0 − λ1| and in (a00, a11) against det(A) as shown in Figs. 2(a) and 2(b),
respectively. Again, the scatter plots are for 150 pairs of estimates in total,
while the boxplots are for 400 pair of estimates per box; and a few outliers
are out of the frame.

Regarding |λ0 − λ1|, we see in Fig. 2(a) that, compared to the MLEs, the
BPMs tend to be closer to the true values and much more stable when the
difference |λ0 − λ1| is relatively small; in other words, when the two states
are close. These characteristics switch around, making the MLE the better
choice, when |λ0 − λ1| increases toward 3. This indicates that in the first case
the global (and local) maximum of the likelihood surface is unstable and often
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Fig. 1. The Root Mean Square Errors in (a00, a11, λ0, λ1), n = 30

not close to the true parameter set, which gives an advantage to the BPMs;
and in the second case the global maximum tends to stay close to the true
parameter set, while the distribution surface has a very long asymmetric tail,
which gives an advantage to the MLEs and an instability to the BPMs.

Two examples of the likelihood surface are plotted against λ0 and λ1: one
for when |λ0 − λ1| is small (0.5) and the other for when it is larger (2.5) in
Figs. 3 and 4, respectively, with n = 40. In order to visualize the likelihood
distribution that is actually in five dimensions (including the likelihood itself
and with the initial state distribution being fixed) in three dimensions, the
values a00 and a11 are fixed to those of the MLE estimate in (a) and of the BPM
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Fig. 2. The Root Mean Square Errors in (λ0, λ1) and (a00, a11), n = 30

estimate in (b). Hence, they do not give the whole view (which is impossible)
but provide some hints about it none the less.

The parameter values (a00, a11, λ0, λ1) concerned are as follows: in Fig. 3 the
true value is (0.8, 0.6, 1.0, 1.5), the MLE is (0.35, 1.00, 0.00, 1.20), and the BPM
is (0.63, 0.28, 1.19, 1.20); and in Fig. 4 the true value is (0.8, 0.6, 0.2, 2.7), the
MLE is (0.56, 0.68, 0.00, 1.60), and the BPM is (0.69, 0.46, 0.92, 1.02). For each
estimate, from the pair of estimates in symmetry, the one with the smaller error
in (a00, a11, λ0, λ1) is plotted, and the determinant of A is 0.8+ 0.6− 1 = 0.4.

Regarding the effects of det(A), we see in Fig. 2(b) the difference is mainly
in the stability. We see over-all higher stability of the BPMs compared to
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the MLEs, while the performances of both estimates are better when the
determinant of A is smaller (i.e., when the state stays the same relatively long
in either state), which agrees with our intuition.

Considering the results above, we now focus on the combinations of the subin-
tervals in which the error distributions of MLEs and BPMs are found to be
considerably different, which are [0, 1] and (2, 3] for |λ0 − λ1|, and [−1,−0.8]
and [0.8, 1] for det(A). Under the restriction 0 < λ0, λ1 ≤ 3 as before, 200
θ-values are randomly picked for each of all the possible combinations of these
subintervals so that θ are uniformly distributed with respect to the intervals.
Then for each of the θ-values picked, an observation sequence is generated
with n = 30, and the BPM and MLE (using the EM estimator in the same
way as before) are obtained. The root mean square error of the estimates in
(a00, a11, λ0, λ1) are shown in Fig. 5 and in Table 1.

As expected, when the change in Poisson parameter is small (i.e., when |λ0 −
λ1| ∈ [0, 1]), the change in the Markov chain characteristics (as far as we see by
det(A)) does not matter much in the error distribution (see the first two pairs
of the boxplots), compared to when it is large (see the last two pairs). When
the |λ0 − λ1| is large, having constantly alternating Markov chain (or having
det(A) ∈ [−1,−0.8]) gives considerably more advantage to the MLE than
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Table 1
The Root Mean Square Errors in (a00, a11, λ0, λ1) with Various Combinations of
|λ0 − λ1| and det(A), n = 30

|λ0 − λ1| det(A) mean median variance

MLE BPM MLE BPM MLE BPM

[0, 1] [−1,−0.8] 1.14 0.81 1.12 0.78 0.74 0.03

[0.8, 1] 1.28 0.83 1.25 0.78 0.60 0.04

(2, 3] [−1,−0.8] 0.42 1.35 0.35 1.43 0.29 0.16

[0.8, 1] 1.28 1.57 1.02 1.67 0.95 0.42

having a Markov chain in which the current state does not have much effect
on the probability distribution for the next state (or having det(A) ∈ [0.8, 1]).

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

ro
ot

 m
ea

n 
sq

ua
re

 e
rr

or
   

   
   

   
   

   
 

in
 (

a 00
, a

11
, λ

0, λ
1)

MLE   BPM MLE   BPM MLE   BPM MLE   BPM

|λ
0
 − λ

1
|

[0.8, 1][−1, −0.8][0.8, 1][−1, −0.8]det(A)

[0, 1] (2, 3]

Fig. 5. The Root Mean Square Errors in (a00, a11, λ0, λ1) with Various Combinations
of |λ0 − λ1| and det(A), n = 30

As for PHMMs with a smaller data size, the simulation implemented to pro-
duce Fig. 5 and Table 1 is repeated for sequence lengths n = 10 and 20 to see
the effect of the data size to the error distribution. No statistically significant
change is observed.

Also to see the overall errors, 1000 PHMMs are generated randomly with
respect to det(A) ∈ [−1, 1] and |λ0 − λ1| ∈ [0, 3] for each length n = 10, 20,
and 30. The root mean square errors in (a00, a11, λ0, λ1) for this simulation are
plotted in Fig. 6. Again, no significant difference is observed in this data size
range; but, BPM seems to have more stability than MLE in overall errors for
PHMM parameter estimation at least when n ≤ 30.
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Table 2
The Size of Ω̂n Compared to the Size of Ωn

n ρ size of Ωn size of Ω̂n constant c

(2n) mean median min. max. variance

10 9 1.02 103 2.72 102 2.80 102 74 464 7.5 103 4.46 10−23

20 12 1.05 106 1.69 104 1.40 104 344 9.18 104 1.7 108 4.27 10−36

30 13 1.07 109 2.72 105 1.77 105 814 2.03 106 8.6 1010 3.66 10−43

Note: Constant c is such that maximum = cnν(ν+ρ)+3 with ν = 2.

5.2 Computational complexity of the BPM

As a reference for the reduction in computational complexity for the BPM,
simulation results are shown in Table 2, comparing the size of Ωn, which is
2n since ν = 2 is used, and Ω̂n with n = 10, 20, and 30. For each n, the
data are for 1000 observation sequences generated from 1000 θ-values that are
randomly picked so that they are uniformly distributed with respect to both
|λ0 − λ1| and det(A) under the restriction 0 < λ0, λ1 ≤ 3. The constant c is
from the upper bound cnν(ν+ρ)+3 = cn2(2+ρ)+3 mentioned in Section 3.4.
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6 Conclusions

Using rather simple but innovative algorithms described above, the exact BPM
is actually feasible and is superior to the MLE for certain PHMM applica-
tions (and also for some other types of discrete HMM applications) if the
application has small data size and observation space, but not so otherwise.
How ’small’ depends on today’s computer capabilities and the actual imple-
mentation methods to realize the algorithm. Through simulations using the
proposed algorithm applied to a two-state PHMM with small size data and
observation space, we see how the MLE and BPM differ in their qualities.
When the difference in the Poisson parameters is small, the BPM is closer to
the true parameter set most frequently and also significantly more stable than
the MLE, while when otherwise the MLE is closer to the true parameter set
on average instead. At the same time, overall and on average the root mean
square error is about the same, but the BPM is much more stable than the
MLE. It would be worth considering the exact BPM, possibly together with
the MLE (or with the approximation methods for BPM, like MCMC, for ap-
plications with the larger data size, using a part of the data, to get some extra
intuition), when feasible.
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A Integration Over the Transition Matrix A for BPM

As for the integration over A, given a Markov chain sequence of length n, X1:n,
we use the counts K(n) = {k

(n)
ij }i,j∈ζX

obtained from X1:n. We first denote an
operator for addition in modulo as +̂ so that

i+̂j ≡ i+ j (mod ν) and i+̂j ∈ ζX .
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Using this operator, we shift the entries of the transition matrix A within rows
to have Ã = {ãij}i,j∈ζX

, where ãij is defined as

ãij = ai, i+̂j .

This is to make ãi0 the diagonal elements of A for notational convenience.
Furthermore, define

K̃(n) = {k̃
(n)
ij }i,j∈ζX

where k̃
(n)
ij = k̃ij

(
X1:n

)
= k

(n)

i, i+̂j

so that the relationship between the counts K(n) and K̃(n) is analogous to the
one between A and Ã. Then, in terms of Ã and K̃(n), (5) can be written as

P (X1:n, Y 1:n | θ) = πx1


 ∏

i,j ∈ ζX

ã
k̃ij(X1:n)
ij






∏

i∈ ζX

u∈ ζY

(fi,λi
(u))liu(X1:n, Y 1:n)


 .

For the integration over A to get Φ
(
K(n)

)
and Φ̃

(
K(n)

)
, we use only the prod-

uct involving ãij . We assumed Dirichlet distributions for the prior P (A), while
assuming row-wise independence of the elements in A, so that, for unknown
parameters γi,0, γi,1, . . . , γi,ν−1, i ∈ ζX ,

P (A) = P (Ã) =
∏

i∈ ζX

P (ãi0, ãi1, . . . ãi,ν−1) =
∏

i∈ ζX

∏
j ∈ ζX

ã
γij−1
ij

Zi

=
∏

i,j ∈ ζX

ã
γij−1
ij

Zi

where Zi = Zi(γi,0, . . . , γi,ν−1) are the normalizing constants such that the
factor for P (ãi0, ãi1, . . . ãi,ν−1) integrates to unity for each i (Gelman et al.,
1995).

Denote the range of Ã as R
Ã

so that Ã is a ν × ν probability matrix under
the restriction ãi0 ≥ ãi+1,0 for all i ∈ {0, 1, . . . , ν − 2}, which is equivalent to
the original restriction aii ≥ ai+1,i+1.

From (7), since
∑

j ∈ ζX
ãij =

∑ν−1
j=0 ãij = 1, we have

Φ
(
K(n)

)
= Φ

D
(D)

=
1

∏
i∈ ζX

Zi

∫

Ã∈R
Ã

ν−1∏

i=0





1 −

ν−2∑

j=0

ãij




di, ν−1 ν−2∏

j=0

ã
dij

ij




ν−2∏

i=0

ν−2∏

j=0

dãij,

where
D = {dij}i,j∈ζX

,

and dij is the sum of the counts and the exponent of the prior defined as

dij = k̃ij

(
X1:n

)
+ γij − 1.
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Then, by a straightforward (but rather long, owing to the restriction ãi0 ≥
ãi+1,0) derivation, we get

Φ
(
K(n)

)
= Φ

D
(D)

=
1

∏
i∈ ζX

Zi

·G (D)
p̃ν−1∑

iν−1=0

p̃ν−2∑

iν−2=0

· · ·
p̃1∑

i1=0




ν−1∏

j=1

gj1(Ij)


 g2(I1), (A.1)

where

G (D) =
∏

k∈ ζX




ν−4∏

j =−1

pk(j)∑

i=0

gk0(i, j)


 , (A.2a)

gk0(i, j) =
(−1)ipk(j)!

i!(pk(j) − i)!(dk, ν−j−3 + i+ 1)
, (A.2b)

gk1(Ik) =
(−1)ik p̃k!

ik!(p̃k − ik)!φk(Ik)
, and (A.2c)

g2(I1) =
(φ1(I1) + d00)! p̃0!

(φ1(I1) + d00 + p̃0 + 1)!
(A.2d)

for Ik, pk(i), p̃k, and φk(Ik) defined as

Ik = (ik, ik+1, . . . , iν−2, iν−1), (A.2e)

pk(i) =
ν−1∑

j=ν−i−2

dkj + i+ 1, (A.2f)

p̃k =
ν−1∑

j=1

dkj + ν − 2 = pk(ν − 3), and (A.2g)

φk(Ik) =
ν−1∑

j=k

(dj0 + ij) + ν − k. (A.2h)

For the simulations in this paper, we let γij = 1 for all i, j ∈ ζX ; i.e., we let
dij = k̃ij .
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