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1. Introduction

This paper discusses several methods for identifying the values of unknown parameters in a
linear stochastic system; i.e., the maximum likelihood method, the least squares method, the
extended least squares method, the weighted least squares method, and the prediction error
method. The estimators obtained will be checked for convergence, and their variances will be
discussed. Also, whether they are biased will also be checked. For each method, some
examples and the computer simulation of the process will be shown.

Consider the linear stochastic system

Xop1 =AX, +Buy + Gw, 1)
Ww=Cx,+ Hvy,

where x, € R”, u, € R™, 5. € R\, w, € R%, v, € R" and 4, B, G, C, H are fixed matrices
of appropriate dimension. The basic random variables x,, Wy, Wy, ..., Vo, V;, ... are assumed to
be independent. Also, consider the single input single output pth order ARMAX model,

2 p P
Vet X @Y, = X by, +e+ Y e, @)
i=1 i=1 i=1

where {y,} and {u} are output and input sequences, respectively. The system described in
Equation (1) above can be written using this ARMAX model as follows [1].

We introduce the shift operator g. For any sequence or stochastic process {f,, k = 0,
1, ...}, let £ be the sequence {£,}, and let g¢ be the sequence {g%,} where g¢, := £,,,. Then
(1) can be written as



gg=Ax+Bu+ Gw, @)
y=Cx+ Hyv, (i)
where x, y, i, v, and w denote sequences. Solve (i) for x,
gl —Ax=Bu+ Gw
x = (gl —ABu+ Gwl,
and substitute x in (ii) with the equation above, we get
y=Clgl —A)'[Bu+ Gw] + Hv. (iii)

Since adj(gl — A) is a polynomial of g with degree p—1 and with the coefficients in pXp
matrices, we can let ; be matrices such that adj(gf — A) = o, + o,_,g + -+ + ag®".
Note
(gl — A)™" = [det(gl — A)] 'adj(g] — A4)
and
det(ql — A) = (gI — ADladj(gl — A)].
Also,

det(gl — A) = (gI — A)[adj(gl — A)]
= (gl — A)(er, + apoyg + -+ + g™
= Cdpq -+ C:!p_lqz + --- + Otqu_l + Oflqp - Aap - Aap_lq I Aalqp—l

= —Awa, + (o, — Ao,_))g + (a,_; — Aap_z)q2 +
st (o= Ae)gtT! + oyg”
p=-1

= _Aap + Zl (in_l_l_,- - Aapmi)qi + alqp.

Then

p—1
g "ldet(gl — A)] = —Aa, g7 + V(oo — 4, )07 + &
i=1

P

= Y &g

where gy = 1, a, = —Aa,, and g, = «,yy — Ao for 1 < i < p—1. Multiply (iii) above by
g "ldet(gl — A)], and we get

q "[det(gl — A)ly = q "[det(qg] — AYIC(gI ~ A)'[Bu + G w] + g~ *[det(gl — A)H v.



[i a,q"'ly = g *ldet(qgl — A)]C {[det(g] — A)]'adi(¢l — A)} [Bu + G w]
i=0
+ [i‘ a,q”'1H v
=0
= g PCadj(gl — A)[Bu + Gw] + [PE a,q '1H v
i=0
P P
= g ?C[ Y, e, q" I[Bu+ Gwl + [}, ;g 1HV
i=1 =0

= [p Co,q ' 1[Bu + G w] + [3: a,q 1 Hv
=1

i=0

» » »
[E CoyBg~lu + [Y, CoGg~lw + [, a,Hg Iy
=] =1 i=0

¢

[T CouBg1u + [0, H) ] + TICuG, aHl ¢ V]

P P
[Y.b,g7 T + coe + [ Y c.q7 e
i=1 =1

where ¢ = [w, vI%, b, = Cq;B, ¢, = [0, H], and ¢; = [Ce, G, g, H] for 1 < i < p[1]. So, we
can write

P 14 F
i + X; QY1 = Zl biw; + cog + El € Eie
This is the ARMAX model, where v, € RY, u, € R™, g, € R®™. Also, under the condition
that # = I, this model can be written as Equation (2).

By choosing an appropriate substitution for 6°, ¢1, and v—for example, letting 6° :=
(—aly reve —ap: bl: srey bp Ts ¢£ = (yk: e yk—p+1s Ups oosy uk--p ’ and Wiy -5 (Clgk LR
Co€i—p+1 T Ey1), €1C.—We can rewrite Equation (2) above as follows:

Yes1 = ¢f 0° + Wit (3)

where y,.., and ¢, are random variables linearly related through the parameter 6°, except for the
perturbation w,,. Our goal is to identify the parameter 9°.
Some of the terminologies that are critical to an identification are described below.

Markov Chain

Let {X,, n = 0, 1, 2, ...} be a stochastic process that takes on a finite or countable

number of possible values, where n is the set of nonnegative integers. If X, = i, then the
process is said to be in state 7 at time n. Suppose there exists P,; denoting a fixed probability
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that the process currently in state { will next be in state j; i.e., we suppose that
Pij = P{Xn+1 =j|Xn = i? Xn—l = in—l! soes Xl = ils XO = 10}

exists for all states &y, iy, ..., {,_y, i, fand all » = 0. Such a stochastic process is known as a
Markov chain. Therefore, since the above probability depends only on the current state i and
the next state j, we can write:

Pij = P{Xn+1 =j|Xn = i}.

In other words, the conditional distribution of any future state X, ,,, given the past states X, X,
..., X,_; and the present state X, is independent of the past states and depends only on the
present state. This property is called a Markovian property.

Martingale Process

A stochastic process {X,, F,, k = 1} is said to be a martingale process

i) if F, is an increasing sequence of g-algebras,
ii) if X, is F,-measurable, and
i)y if E (X,,, | F) = X, a.s. for all k.

The Martingale Convergence Theorem:
If {X,, F;, kK = 1} is a martingale such that for some p = 1,
sup £ (|%,]7) < e,
then [im X, exits and is finite a.s.

koo

Kronecker’s Lemma

Let {r,} and {s,} be two real valued sequences satisfying
re >0, limr, = o, and Y, ELE
Fevon =1 Tk
Then N
) 1
lim — Y 5, =0.

Noo TN k=1



Brownian Motion Process (Wiener Process)

Let {X(#), t € T} be a stochastic process, where T is the index set. The process has
independent increments if for all , < #, < 1, < - -+ < t,, the random variables

X(tl) _ X(ID)’ X(IZ) - X@l)} sy X(f,,) - X(trr-l)

are independent. Furthermore, it has stationary increments if X(t + 5) — X(z) has the same
distribution for all .

A stochastic process [W(z), ¢ = 0] is said to be a Brownian motion process if:
»H W0 =0
(ii) {W(®), t = 0} has stationary independent increments;
(iiy  for every ¢+ > 0, W(?) is normally distributed with mean 0 and variance c %.

If ¢ = 1, the process is called standard Brownian motion.



2. Estimators

Consider a system given in Equation (2) which has input # and output y. There is a
conditional probability distribution

Fz|lw:=Py =z |u}

of y given u. Since F depends on the parameter 8, we perform some experiment on the system,
that is we apply an input # and observe the resulting output y, and make an estimate b = 7(y,U)
€ R for the true parameter §°. The function r is called the estimator and § is the estimate.

There are two approaches to find an estimator: the Bayesian approach and the non-
Bayesian approach. Both of the approaches will be discussed. However, we will focus our
attention mainly to the non-Bayesian approach, which includes the maximum likelihood
estimator (MLE), the least squares estimator (LSE), the extended least squares estimator
(ELS), the weighted least squares estimator (WLS), and the prediction error estimator
(PEE).

Clearly, we need to make sure that we have the estimator that converges. Furthermore,
having the estimator in recursive form is very important for the actual computation, as discussed
below.

2.1 The Bayesian Approach

In the Bayesian approach we assume to know p(f), on the parameter set ©, which
represents our belief of the likelihood that # = 6° before making any observations. From this
prior density function p(f) we can obtain the conditional density function p(6 | y, u) by Bayes’
rule,

_ PO | u 6)p®
p@ |y, w 26 [ %)

_ 0 n0p®
[P0 1, 0 p®) a0

2.1.1 The Bayes Estimator

Let L(#”, 6) be a cost function representing the loss incurred by estimating the parameter
to be §’ when 6 = §°. Let 7 be any estimator. Then the expected loss incurred by 7 given (v,
u) is

o |y, 0= [ LGG, W, 6 pO | y, u) db



The Bayes estimator 7* is the one which minimizes the expected loss, i.e.,

[1].

Example: A communication channel in which the unknown transmitted signal # is either 0 or

Jr* [y, w) < J(r | y, w), forallr

1,s08 € © = (0, 1). The received signal is

where w is the channel noise and w ~ N(O, ¢%). The receiver observes y and has to decide
which of the two possible signals # has transmitted. To the receiver’s decision is represented
by a function 7: y - (0,1). Suppose the loss function is L(#, #°) = |§ — 6°|% where 6° is the
true signal transmitted. The prior probability of the transmitted signal is p, = P{# = 0}, p,

y=0+w,

Pl =1}y =1 — p,.
By Bayes’ rule,

PO | 0)p®)

PO 1Y) = 25 TDp + 20 | 07,

and, since y ~ N0, o),

x = 9)2] _

2o | 0) = (27) Pexp [——201——

So,

p(l[y)

Similarly,

pO[y)

(o72m) Vexp] — - &= 9)2] 2

2¢°
_ 2
(0127r)'”26xp[ &9 3 029) ] p, + (&Zw)"l’zexp[——%j—f] Do
¥ x+1
oxp[~ 552 27| P
X 2x + 1 X
0|5z ~ | Bt e[| o
P
P+ po expl(2x + 1)/(20%)]
X
(02211-)“”26}{;{—— 52 ]pl
— 2
(0221r)‘”2exp[— Ll 3 029) ]pl + (0°27) " exp ——f?] Do

Po

pexpl(—2x — 1)/2d)] + p, ~



t
So, let a = f p(1 | y)dx, then
—t

_ " P
«= L P1+ poexpl(2x + 1IQ0Y)]

- |5 -l men )]
o — L Pt pexpl@t + D/@A]

@ py + pexpl(—=2t + 1)/(20%)]
Similazly, let 8 =f (0 | v )dx, then

_ ! Do
b= f - Po + Py exp[—2x — 1)/(26%)]
L ot prexpl(=2¢ — 1)/(20%)]

T I Dl — DA

The expected loss is
7O 1y <ty =@— 10 [ p | ydr+ &f po | yax.
= (8 — 1)’ + 68

So, the estimator # that minimizes the above expected loss is

5%(9|ys|z|):2(9—1)a+293=0
@+ B = a

A o
0= o+ 8.

2.2. The Non-Bayesian Approach

If there is no prior distribution over the set of model parameters ©, we look for
estimators with some desirable properties as shown below.

2.2.1 The Maximum Likelihood Estimator (MLE)

Consider random variables X;, X;, ..., X, from a distribution having p.d.f. g(x;0), 8§ €
O. Then, their joint probability function

M@@;xy, X5 .o, x) = fix1, X, o0 %, | 6), 6 €O

8



which represents the likelihood that the values x,, x,, ..., X, will be observed when 0 is the true
value of the parameter, is called the likelihood function M. Suppose there exists § such that,
when ¢ is replaced by ¢, M is a maximum, then § is called a maximum likelihood estimator
of 9.

If we consider the model given in Equation (3)

Yer1 = ‘35?:6 + Wi,

we see x;, = (¢,, ¥,) and the likelihood function M is equal to

Py Yoo § < 1) = Py_1(D0)g1 1001 | 00D |o(b1 | bor YL T2 | bos D1, Y1)
"t pﬁ|n—1(¢n ] QSO, ceey Y-t yl’ LRRE] yn)

where g;,; and pjy,_, are conditional probability densities.
Consider the model given by Equation (3), which is

Yirr = S5 0 + w1,
2.2.1.a Suppose the following assumptions hold:

Assumption 1. {w,} is independently identically distributed (iid) with known probability
density f{w).

Assumption 2: ¢, is independent of {w,, s = k+1} fork =0, 1, ...
Assumption 31 pii(dy | S0, oo, Biy, Y15 ---» ¥ ) does not depend on 6.
Then the MLE §, maximizes
M) = q11601 | 908102 | bos 1 3+ @opneiOn | Pos -r Bty Yo +o0s Ynor)-
= fn — oL O 0n — 67 6) - - Ay, — ¢h_1 0).
So, the MLE maximizes
PO =3 O — 40

Furthermore, if we change Assumption 1 to Assumption 4 as below, the MLE coincides
with the LSE.

2.2.1.b Suppose the following assumptions hold.

Assumption 4: {w} is independently normally distributed with the mean 0 and the
variance ¢°.



Assumption 2: ¢, is independent of {w,, s = k+1} fork =0, 1, ...
Assumption 3: p;ﬂ|k_1(¢-k | @y -5 Dicss Yi» -.., ¥ ) does not depend on 6.

Let f{w) be the probability density function for {w,}. Then the MLE #, maximizes

n—1

In M (6) =k§ nfQrn — o1 0

as shown in 2.2.1.a above. So, under Assumption 4, the MLE maximizes

n—1

1 1
InM0) =~ —In2no’) ~ L Y Ora — 9L 0%

k0

Since the first term on the right does not depend on #, minimizing In M, (f) above is to
minimize Y525 (7.1 — ¢ 6)°. Therefore, the MLE coincides with the LSE.

2.2.1.c Consider the ARMAX model of Equation (2) above, which is restated below.

r 14 r
Ve T _El &Yt = 1231 bty + & + }_:41 Cr&p—y
Suppose the following assumption holds.
Assumption 51 by = --- = b = (.

P

Under Assumption 5, we have the ARMA model,

P p
Y t EI &Y = 21 Ciérps
I= =

Let
- T 2
°i=(=ay ..., =4, ¢, ..., ;) € R7?,

Weir °F Eps
and
D 1= Oy oovs Yiwrops € vee 8k+1—p)T'
Then, the ARMAX model can be written as Equation (3), which is
Verr = 6% 0° + Wiy

Suppose the following assumption holds.

Assumption 4. {w,} is independently normally distributed with the mean 0 and
the variance o2.

10



Let {,z*} and {2 2} be the power series defined in Equation (34) (See 3.2.5.b below for
details). Since p,‘iwﬂl(qbk | dos -evs D1y Y1y ---» ¥ 1) does not depend on § (i.e., Assumption 3
holds), the MLE maximizes

Mn(e) = qtl)lﬂ(yl I ¢o)qg|10’2 I ¢05 ¢1: yl) et qg|n"10)n | ¢’03 cors Puctn Y1y -eey yn-—l)'
Now,
qz]k—l(yk [ ¢s’ Yer 8 = k_l) = qf:|k—l(¢§—l 90 + Wy | QS_,., Y5y 8 = k_l)

— oyl
= Gp-1(Oge15 +-05 Yr—pr €p—15 -+-3 ‘Ek—p)r 6° + g, .
l ¢s = (ys} MRS ys+1—p= Bs: ety 8s+1— ) H ysa § = kwl)

= qz|k-1(8k | é5 ¥ 8 < k—1)

Since, as shown in Equation (30) in 3.2.5.b,

w

& = Be -
i=0

7

Therefore, the MLE maximizes

1 n k
M, = (27”72)—MGXP[“"'5.5 Y (E gk——jyj)z]

k=1 j=0

or 1 1 n k
= ———In27e’) — —5 L)
in M, = n(2ro’) 202 kmEl E=ZO: i A)
So, the MLE minimizes

aln M, 1 ko
T 3;:1 ka_,-(jigo B3]

for al 0 < i < n. Thus, the MLE coincides with the PEE that minimizes V() given in
Equation (31)

1 n 1 n k
V.(0) = T E Ok — 5’k|k-1)2 Sl E (E gn-—jyj)z

=1 n =1 jso

[1].

2.2.2 The Least Squares Estimator (LSE)

Suppose we have the data from the past {¢q, &, ..., d,_1, Y1, ..., ¥,+ Where the ¢, and
¥; are random variables such that

Veur = 18, k=0,1,2,...,n—1,



i.€., Y41 is approximately a linear function of ¢, with parameter §. The ¢, are vectors, and y,
are scalars. To estimate ¢, we choose 8 to minimize

n—1

V.0) := >;;_0(yk+1 — ¢; 0)%.

n—1

aV,(0)/a8 =2 kZ:O (=8J0ks1 — 61 6)

3V, (6)/80

Setting aV,(0)/00 = 0, we get

So,

n—1
2 EO(*MHI + b 0)

n—-1

1
Vi1 T k—EO b 0 =0

0

n—
-z
k=

I

1 n—1
dup7 0 = ];_jod’;i)’kﬂ

k=0

n—1 n—1

B, = (X oD ¥ bt
k=20 k=0

4)

assuming the inverse exists [1]. However, to compute the value of this estimate @,, at each step
using the above formula (4) is obviously costly. Hence, we obtain # recursively as shown

below.
Define R, := Y, ¢,¢7. Then the equation above becomes
k=0
n-1
01: = R;'l—l Z¢Ayk+l
k=0
or n—1
Rn—lan - Zd)kyk+l
k=0
So,

l?)n+1 = R;l qukvk-i-l

k=0

n—1
= R;l kz:0¢]yk+1 + R;l¢ry:z+l
= R;IR,I_lén + R;Iq-’)n)’;Hl

= Ri_tl(Rn - (}Sntﬁi)én + R;1¢ryr:+1

12

&)

(6)

from (6)



= 3)': - R;Iqbn(;brzz-én + Rglqsnyn+l
9i'r+1 = én + R:1¢n(yn+1 - 9’55@”) (7)

where
Rn = R::—I + qbn 11;‘

Now, we only need to evaluate ¢,(y,,; — ¢70,) and ¢,¢7 for each estimate at time n. Still,
computing the inverse of the matrix R, is costly. So, we introduce P, := R' as shown below.
First, we apply the matrix inversion lemma

N+ GOH)' = N'' — N'GEHN'G + Q") lHN!,
to Equation (7).
[The matrix inversion lemma can be verified as follows.
(N + GeH)™'(N + GQH) = [N"' — N'GEHN"'G + Q") 'HN|N + GQH)
I=(+ N'GOH) ~ N'GEHN"'G + Q™Y Y(H + HN'GQH)
N"'GOH = N'GHN"'G + 0~)""H + HN"'GQH)
I = (N'GEH)"'NT'GEHN"'G + Q™) '(H + HN"'GOH)
I= (@B 'HN'G + 0™)"H + HN"'GOH)
I = (HN"'GQH + Q"'QH)"'\(H - HN"'GQH)
I = (HN'GQH + H)"\(HN'GQH + H)]
By setting N=R,_;, G = ¢,, 0 = 1, and H = ¢, we get

P, = Pn—l - Pu—lqbn((ﬁzpn—lqan + 1)_1¢§Pn—1

n

Pn—l n‘brz;Pn—l
Pn = n—1 __u—]‘-_" .
1 + f,ann_;an
P = PH—I + Pn—l ;{Pn—-lqbn - Pn-—-l r:¢az:Pn—1
" 1 + ¢£Pn—1¢n .
P = Pn--l 8
" 1 + (brj:Pn—I n . ( )
Then
en-i-l = en + Pn¢u n+l d);{en) (9)
or

13



Pn— iqbn

By, =B, + —tnzt®n
n+l n 1+ qf'fp,,_; .

1 — 070, (10)

where we can recursively obtain P, using Equation (8). Now, we no longer need to compute
the inverse of R, for each step.

2.2.3. Extended Least Squares Estimator (ELS)

Consider the ARMAX model of Equation (2) above, which is restated below.

P p P
Ve + ; QY = El bu,_;, + & + ; Ci &

or
Ve + Y1 R apyk—p
zbluk,,l_l_ R +bpuk_p+ b +8k+(’.18k—1+ . +Ck8k—p
g T p—
Let ¢k .= (yk, ey yk+1—p? uk, aeey 'uk+1—p3 &‘k, reey 8k+1— ) y 0 . (mal, veey ap, bl, very bp, Cly very

c,)’, and w, : = &, Then we can rewrite the model as Equation (3),
Y= i1 0+ w,

(Or ¥4y = &L 8 + wy,,). This model looks the same as the model used for the LSE above, and
the LSE is given in Equations (8) and (9), which are

P

-1

P = —nzl
" 1+ ‘Ab?:Pn—l n ’
and X
Bn-i—l - en + PJ!¢I!0’I!+1 - d)i‘en)
where P, = (¥ ¢,67)7".
k=0
However, since we cannot observe wy, ¢, which contains w;’s is not available. So, w,
is estimated through the parameter estimate 8, as follows. Solving for w, of Equation (3), we
get
wn = yn. - ¢11;——10'

Now, since w, = g,, define &, as below.

Sn = yn - ¢n—19n

14



i L— A A T -
where we define ¢, 1= Vg, ++vs Yir1mps Bis +ovs Uier1-ps &g --0» Ex11-p) - Now, Bquation (7) can
be modified as below._

Au+1 Bn + P ¢r:0’n+l &,1: 9n) (11)

and where P, := (Y."_, $,6D! and is obtained recursively by

A

I’_‘) Pn 1
" 1 + ¢IP,_ 0, )

ne-n—

X We could obtain an algorithm that is slightly simpler to implement if we let &, :=y, —
Gy 6,, , So that we have 6,,+1 b + P ¢>n +18,41- However, the convergence propert1es change

[1].

2.2.4. Weighted Least Squares Estimator (WLS)

Consider the ARMAX model of Equation (2) above, which is restated below.

P P ?
Yt ; &Y = E biu_; + g + E Ci &y

i=1 fw]

where y;, &, € RY, u, € R, and a, b,, c, € R. Let (R, A, P)be a probabih'ty space and F,
be the o-algebra generated by events occurring up to time 5. Assume that the noise & = (&,) is
a martingale difference sequence with

sup E[ |le, ]2 | F] < 0% as.

s20

where ¢” is deterministic. Let y, be scalars (i.e., I = 1). Assume that the initial state ¢T =
O, ud™’, &f) is F, measurable and, for p = 0,

o = O, ul, &b,

where ykp = (yk: rer yk-z—l—p): ukp = (uk: cery Upyp— ) and where akp = (Sk: vy Spy1- ) Let GT =
(—ay, ..., =@, by, ..., by, €y, ..., ¢,)". Then we can rewrite the Equation (3) above as

Yirr = O3 0 + &
The noise ¢ is predicted by & with & = 0 and, for p = 0,
ék+1 = Yer1 — %i 9k+1

T o A
v = 0F, wl, &),

where

15



So, we can also express the model as
= ¢L b, + 8
Yest k Vsl K1

Let {oy} be a sequence of random variables adapted to F, positive, nonincreasing, and < 1.
To estimate &, we choose ¢ to minimize

n—1

V0 := X aOer — 5 0).

k=0

n—1

©r Vi) := T el — 4 0%)

n—1
V()80 = 2 k;} (~ou) Vs — 0% 0)

n—1

av.(8)/o8 = 2 ): (— e Yers + o7 0
k=0

Setting aV,(6)/06 = 0, we get

n—1 n—1

=Y bV + Loubdr =10
£=0 k=0

n—1

n—1
E oyl = anﬁf’kykn

k=0
So,

n—1 n—1

9;; = (E bt Y 4P Vw1 (12)
k=0 k=0

assuming the inverse exists [1]. Also, we can obtain recursively as shown below.

n

Define S, := Y, cd 6L, Then the equation above becomes
k=0

n—1

9:: = S;l1 E 4P Vrr1

k=0
or A n—1
Sn—lan = E ak¢lyk+1'
k=0
So,

i3

A - g-1

6n-f~1 - Su Zakgbkylﬁl
k=0

n—1

= S;:l Zoak¢lyk+1 + S;1a11¢ny1:+1
k=

= Sgl‘s'p—lén + S;larl¢nyn+l

16



S“l

n

>

Il

A

Il
=

A A
6"4-1 = 9:;

and

(Sn - anqanb 111) 9:: + S; lanqbnyrw 1

-1 Th -1
n § " C\!u(ﬁ" n Bn + Sn and)n Ynt1

" + Szland)n(_cbg 91: + yn+l)

+ S;Igbnan@rﬁl - (f)rl; 9;:)

Sn == Sn—l + d’uanqb}:'

(13)

(14)

However, finding the inverse of §, for each n is costly. So, we introduce U, := S as shown
below. First, we apply the martrix inversion lemma

to Equation (7). By setting N= S, |, G = ¢,, 0 = «,, and H = ¢7, we get

Then

or

(N + GOH)™ = N"' -~ N'GEHN'G + Q") 'HN ',

U;l = U;z—l - DT»—I u(‘b:{l]n—ltbn + llan)_l(tb?:Un—l
U 19:$1Un1

U, = U, , — ==l
? " 1/06" + Qﬁi‘U;,_l n

U — (1/an)Uw—1 + Un"1¢£U;z—l n a:—lqbnqbr{at—l
" I/an + qsgl;n—l n

U — I]Jl—l
" 1 + ¢;{az—l¢nan )

éi'r-i-l = an + Un(tbnan R+l Qb}:é")

A " Uu_.o
9 — 6 + n—1%n
n+l n I/Ot’n + (IS};U;t_l

0;n+1 - ¢:1:9n)

where we can recursively obtain U, using Equation (15) [2].

2.2.5 The Prediction Error Estimator (PEE)

Again, consider the model given in Equation (3), which is

We can predict y,., for the above model, given the past {y,, ¢,, s < k} by

Ver1 = &1 8 + Witi-

17
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j’\’k+1[k(0) 1= E Ot | Y 95 § < K).

Since this prediction depends on #, the predictor is a function of §. We try to find an estimator
which will make the prediction errors, y,,, — Pr+1(0) smaller. The prediction error estimator
is the estimator 6,, which will minimize L (6) defined as follows [1}:

1 n—1
L) := E Orrr — y\k+1|k(3))2-

The PEE is a good estimate, but it is very hard to implement recursively. However, an
approximation of the PEE is possible using the recursive prediction error method (RPEM) as
follows.

The Recursive Prediction Error Method (RPEM):

By means of a Taylor expansion of L () around 8,_,, we obtain

L) =LG, )+ LB, )0 —8_)+ = (6 — 8, )LD, - b,_)
+ 0(]9 - én--llz)i

where L, is the gradient and L), is the matrix of second partial derivatives with respect to 4, and
o(x) denotes a function such that o(x)/[x| - 0 as |x] - 0. Let

L (0 N
aaf’; ) J!(an—]) + L"(en 1) (0 ;;—1)}T + O(IG - Bn—lII) = 0

Then . .
L"(gn l) 0 = L”(Hnwl) Bn 1 [L:a(au—t)]T + 0(|6 - 9::—1])'

So, plugging 9,1 to this equation, we have
by =0, — Lh@, D1 B, 01 + o(]9, — B, )). (18)

Now, we need to approximate L"(8,_)) and L!®,_). Define

§d0) 1=y — Iie—1(9),
and

Yl) 1= [~ HO] = B’;’:]k—I(a)}Ts (19)
where {;(6) is the gradient of {(6). Then, we have

n—1

d 1
L@ = [-39— 5 kgo (A C)HH

i8



n—1

kgo [5ks1 O] §a(0)

= - i Vis1(0) Gerr(O)
k=0

- - kEO Vert® Gean® — ¥ ® 50
= LLOF — 4,® 56) o)
By differentiating both sides again,
LI = LI,0) + 4,000 + L@)%,0) e

where {7,(0) is the second derivative matrix of {,(6) with respect to §. To approximate L’(6) and
L} (), suppose the following assumptions hold.

Assumption a: 8, is in a small neighborhood of 4, ,.

Assumption b: P(0,_)60,_) = 0.

Assumption c: 8, is the optimal estimate at the time k.
Then, under Assumption &, Equation (21) becomes

Ly®) = L, (6) + %,(00¢,00).

Under Assumption a, L’,;(ED ~ L"(@,_). So, R, can be defined as an approximation of L’(#)
so that

Ru = ‘Rnul + 'Ibn(@)’l/z: 9)‘

On the other hand, under Assumption ¢, L,’;(@k) ~ 0. So, by plugging 8,_, into Equation (20),
we get

[Lr’:(an—l)]r = m"abn(énwl) g.n(én—l):

Therefore, by substituting L;,(8,-,) and L;(8,_,) in Equation (18), and by setting o(|§ — ,_,|)
= ( under Assumption a, we get

a1'1 = aM—l + R;Il ‘ﬁn(an—i) g‘n(én—l)s

18



Define P, := R}', then we can obtain

611 = Bn— n ‘ll’n(én—l) .Cz(én—l): (22)
where

_ _ n 1¢n¢n n~1 _ Pn—l
P Rt ! 1+ \b Pn l‘lln 1+ ’lbtl:Pn—l (23)

through the same procedure used get Equations (9) and (10) for the LSE [2]. Now, we need to

find the way to recursively evaluate ,_,(8,_,) and (0, ).
Consider the ARMAX model,

P P P
Vi + EI G- = El bu,; + & + El Ci ki
i= i= =
or
Ve = T Y1 T 0 T @yt ity o by,
tegto g, + -+, 8,
fork=20,1,2, ..
Let

[+ S T
0° := (—ay, ..., =@, by, ..., b,, ¢y, ..., c),
Wir1 ©= Epi1s

and
— T
ks (yks s yk+1—p7 Uy ooy uk-i-l—p: Ery vees 8k+1—) .

Then for the ARMAX system above,
V=10 = $i-1 0 = Y — &,

& = Y = Fu1() = 5(0).

and

Combining these two equations, we can write

Pipem1 @ = Octs w05 Yoops Yty oo Uy $em1(0), <oy G ()8

By the definition of y,{(f) given in Equation (19), yX(§) = —{(f). So, if we differentiate both
sides with respect to 6,

}{:‘(9) = (Os reey 0: g‘fi-—l(ﬂ): revy ~E‘I'::—p(e))(_ab sery Ty, bl: Sy bp: Cs «ory Cp)T + QS}:_l
Vi) = e &) + -0 + cp‘(.i’c—-p(e) + i
Yi(0) = —ci () — - -+ — Cpﬁbi—p(e) + ¢ry

20



So, we set

o 1= —Clk=Dey — -+ — LI Do, + by (24)

and . X
GL0) 1=y — diib, (25)
where &:’k—l 12 Okt ooor Yimpr Hi1s +evs Wps E‘k—l(ak—l): res Ak—-p(ék—p))r; e(6) and E'k(a)
gpproximate () and {,, respectively; and where (&;(%), ..., ¢,(k)) is the last p components of

¢,. Thus, by Equations (22) and (23), the PEE can be approximated using Equations (24) and
(25), together with (26) and (27) below.

an = An—-l + Pn “n z-n(an—l)! (26)
where R, := Y, goland B, := R;'. P, can be recursively obtained by
k=0
s BT - Pn—l‘pngozﬁnul _ Pn-—l
Pn - Pn—l 1+ gai‘ﬁn—lﬁan 1+ 903;1")"..199,: (27)
[1].

2.2.5.a Suppose the following assumption holds.
Assumption 61 E Wy | ¥, 05, § < k) = 0.

Then the PEE is just the LSE as shown below.

P10 = E Qpur | ¥or b5 5 = K)
=E($i 0+ Weer | Yoo 65, 5 S B)
=E($ 0| Y b0 s S B + EWpy | Yoo ¢ § S K)
=E(@: 0]y, ¢85 <k +0
- 418
Then
1

A@=§%rwmz

V.(6)

where V() is as defined for the LSE in 2.2.2 above [1].
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3. Comparing The Quality of Estimators

There are several measures to compare the quality of the estimators as follows. Consider the
ARMAX model,

» » P
Ve + ): &Gy = 1’21 bu_; + g + E Ci&xp

i=1 i=1
or
Ve= @Yy~ — @V, T b+ - b, uy_,,
tet gt -t 8,
fork=0,1,2, ...
3.1. Unbiasedness and Variances

Assume that there is no prior distribution over the set of model parameters ©. Let
7:.(y, ) > 7(y, 1) ¢ R? be any estimator, where 8 ¢ R?. 7 is unbiased if

E('r]u,0)=f¢(y,u)p01|u,0)dym6, forall § € O,

Lety" = (1, Y25 ---» ¥ and ¥" = (uy, W, ..., u,). For each n, depending on y" and ", 7,(y",
") is the estimator. Then 7, is asymptotically unbiased if

UmE(r, | w',8) =6, forall € O,

g0

3.1.1 Unbiasedness and Varignces of The MLE

3.1.1.a Suppose the following assumptions hold.
Assumption 2. ¢, is independent of {w,, s = k+1} fork =0, 1, ...
Assumption 3: pﬁ|k_1(q{>k | b0, --.s b1, Vis --., ¥;) does not depend on 9.

Assumption 4. {w,} is independently normally distributed with the mean 0 and
the variance o2

Then, as shown in 2.2.1.b, the MLE coincides with the LSE.
3.1.1.b Suppose the following assumptions hold.

Assumption 4. {w,} is independently normally distributed with the mean 0 and
the variance o>
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Assumption 5. by = --- = b, = (.

Then, as shown in 2.2.1.c, the MLE coincides with the PEE.

3.1.2 Unbigsedness and Variances of The LSE
Let

¢ = (_a], caay _"ap, bl} crry bp)T E e = R2P’

Wit i= Cr &+t « 0+ € 85 T Eays
and

¢k L= (yks LRSS ] yk+1—p: uk: ooy Upyy )T-

Then, the ARMAX model can be written as Equation (3), which is
Vo1 = 05 0° + Wy,

In 2.2 above, 7,0)", ¢") = 8 has been obtained in Equation {5) which is

n—1 n—1

9n = (Eqskd)i)_i E¢Ayk+1 .
k=0 k=0

Substituting y,.; by Equation (3) gives

n—1 n—1

b, = (T oD T ool 0° + wepy)
k=0 k=0
n—1 n—1 n—1

O = (L &)™ (L&D 0° + (X 6D b

k=0
n—1

9:1 = 00 + (g::c?kqsl’{t)”l Z ¢kwk+1

or

a1
Bn = 60 + Pn—l E ¢kwk+1 (28)
k=0
where P, = (), ¢,¢D)~"! as defined in 2.2.2.
k=0
unbiasedness:
3.1.2.a Suppose the following assumption holds.

Assumption 7. E Wy | ¢, 8§ < ) =0, k=0,1, ...



Then,
n—1

Ef, =EE@®° + Py L ¢ | 6,5 <1 — 1)
ke=0

n—1

=E@ +E@P_; ¥ &1 | 6,5 <1 — 1))
k=0

n—1

=02+ E@uy L 6E Wiy | 65 Sn = 1)
= f°+ 0
= g°

Hence, the LSE is unbiased [1].

3.1.2.b Suppose the following assumptions hold.

Assumption 5: by = --- = b, = 0.

Assumption 9. a;, = --- =q, = 0.

Assumption 10: E (58 | ¢,, s < o) = 07§, where ¢ is unknown and &, is the
Kronecker delta’.

Assumption 111 ¢; # 0, ¢, = -+ =¢, =0, and §° = 0.
Under the assumptions above, we have

Yee1 = € & T &y,
or, we can write

Yer1 = &0° + Wiy,

by defining w, := ¢; g + &, and ¢, = y, ¢ R. Then
n—1%

n—l1
9:: = (E ¢k¢D_I Z ¢I¢;Vk+l from (4)
k=0 k=0

n—1 n—1

= (X D7 Y Y
k=0 k=0

L&, is Lifk = jand Oifk 5 j.
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n—1 n~=1

1 1
= [71—_—1 E (€1 &y + &)1 [7171- E (1 &y + 8)(ey & + )]
=0 k=0

n-1

1
= [—:_—1 ]:go (¢t &, + 2¢ 818 + D17

n
1 n—1 )
X [+— kZO (c] 18 T €1 82 + €1 EegBrar T EWD)]
"y, — OO
Now, consider X, := Y, b 7 0. We can show that this is a martingale as below.
k=0
&, — 02D ri1Cniim — OB
E(-X:H.l i 8_,., 5 < n) — E(Z ]I;ek n mo | 85, 5 < n) + E( nn»b-ll— nl+1 nt mo )
k=0
s IZ! skak—f.u - ‘725::;0 + O
k=0 k
=X,
Also,
& e, — 078,07
E(X]) sE(L —F7——
7 E 8,8, — 0,26 2
< E |]l;82k m mOI = 0 < o,
k=0
since there is no negative terms. Then, by the martingale convergence theorem,
o &Ei., — 0%
llm X, = E ksk mn k m0 < a.s.
oo k=0

Then, by Kronecker’s Lemma,

lim —— Z (Skak—m - 0-25:1:0) =0 as.
n =0

or
u{le _?i“— k;() akak—m = 0-261:10 4.8.
So, A
_ ¢ 0’ - o _ g0
co? + o? g+ 1 #0 =4

Hence, the LSE is asymptotically biased.
In general, the LSE of parameters (—a;, ..., ~@,, by, ..., b,) will be asymptotically
biased unless ¢, = - -+ = ¢, = 0[1l.
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variances:
3.1.2.c Suppose the following assumption holds.

Assumption 12: E (W, | ¢,, s < ) = ¢%8,; where ¢? is unknown and §, is the
Kronecker delta.

Then,
n—-1
E®, — 6@, — 6° = P, E(Y $0%¢D P,
k=0
= P, (52 P;il) P,y

=P, , 29)

3.1.3 Unbiasedness and Variances of The ELS

The ELS is obtained by Equation (11)

@n+1 = 9}1 + f)nqsr:@rﬂ-l - ‘}BZ 9!1)!

A

A . A A T ~ — — AT A P .
where ¢’k 'l (yk! AR yk+1—p: gy oovy uk-i—l—p: Es -vs 8k+1-p) s Wy = & =Y, — qsn-—-lﬂn and Pn -

(Lo 58D ™"
unbiasedness:
3.1.3.a Suppose the following assumption holds.
Assumption 12: E(W,,, | ¢,,8 < ) =0, k=10,1, ...
Then,

n—1

Eb, =EE@® +2,_, % ¢ | S s <0 — 1))
k=0

n—1

=E@° +E®R,_; ¥ dHsy | b5 <1 — 1))
k=0

n—1

=0°+E@P,_, Y $E Wy | ¢85 =1 — 1))
k=0
=6°+0

= go
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Hence, the ELS is unbiased.

3.1.4 Unbiasedness and Variances of The WLS

Let
° .= (_al, seey ""dp, bl’ ceey bp)T e e = Rzp,
Werr 2= € &+ -0+ C 8, T &y
and
D 2= Qo +vvs Yiert—ps Yo +-v5 U1-p)"-
Then, the ARMAX model can be written as Equation (3), which is
Ver1 = &7 0° + w,,.

unbiasedness:

Inserting Equation (3) to Equation (11) below, we get

n—1 f=1

8, = (X D™ ¥ by Vess
=0 =0

n—1

n—1
6, = (ank‘f’kff’i)_l [kZ;Oakm(cbi 6° + w1

n—1 n—

1
6, = 6° + ():oak‘ibkﬁka)—l 4P Wei (30)
k= k

=0
So, the WLS is unbiased if ¢,,, and w, are independent [2].

3.1.4.a Suppose the following assumption holds.

Assumption 7. E (W, | o, < ©)=0, k=01, ...
Then, the WLS is unbiased. This can be shown by the same procedure as used in 3.1.2.a.
variances:

3.1.4.b Suppose the following assumption holds.

Assumption 12: E (ww; | ¢, § < o) = ¢7%,; where o2 is unknown and §, ; is the
Kronecker delta.
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Then,

n—1

nlE(Z d’ko- akqu) n—1

E @, — 89, — 6o
n—1

= Un_102 ( E d)kakz ¢’£) U;:—l

k=0

n—1

= [],!_10'2(“20 ak‘i)kqbi) D:z—l

< ¢?U

n—1

GD

since 0 < ¢, < 1 by definition.

3.1.5 Unbiasedness and Variances of The PEE

3.1.5.a Suppose the following assumption holds.

Assumption 14: E(w, ., | Fp =0, k=0,1, ...,
where F is the o-algebra generated by {y,, ¢, s < k} ( = Assumption 6).

Then, as shown in 2.2.5, the PEE is same as the LSE.

3.2 Consistency

Obviously, we need to make sure that the estimator converges after an infinite number
of iterations. If it does, the speed of convergence for each estimators should be compared.
For the same estimator , defined in 3.1. above, 8 is asymptotically consistent if 7,(y ",

*¥n

u™) converges to ¢ in probablhty Also, 8, is strongly consnstent if 7,(y", u") converges to ¢
with probability 1 for all ¢, where y* := (y,, ..., y) and u” := (uy, ..., ).

Let
. — T —_ 2
60 « (_al, ceay _ap, b}, aay bp) E e == R P,
Wie1 "= Cr &+ o0+ 0, 801, T &y,
and
= T
k- (yks v yk+1—-p7 Upy ooy uk+1—p) .

Then, the ARMAX model can be written as Equation (3), which is

Yer1 = &3 0° + W1
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3.2.1 Consistency of The MLE

3.2.1.a Suppose the following assumptions hold.
Assumption 2. ¢, is independent of {w,, s = k+1} fork =0, 1, ...
Assumption 3: pp,_ (b | oy --.r $e_1s Y15 ..., ¥ ) does not depend on 6.

Assumption 4: {w,} is independently normally distributed with the mean 0 and
the variance o2.

Then, as shown in 2.2.1.b, the MLE coincides with the LSE.,
3.2.1.b Suppose the following assumptions hold.

Assumption 4: {w.} is independently normally distributed with the mean O and
the variance o 2.

Assumption 51 by = --- = b, = 0.

Then, as shown in 2.2.1.c, the MLE coincides with the PEE,

3.2.2 Consistency of The LSE
asymptotical consistency:

First, we note that

-1

n—1
(011 - 00)(012 - GO)T = (Pu—l kgo ¢kwk+l)('Pu—lk_EO: q{’k]’#l’).kz+}):r from (28)

n—1 n—1

=P, (E Wiy E dWe ) P,
k=0 k=0

= Pn—l (QSOWI + .-+ ¢n—1wn)(¢0wl + --- + an_,IWn)T Pn—l
n—1 n—1

= L (Z Z ¢’kwk+1vvj+lq5;) ‘Pn—l

k=0 j=0

3.2.2.a Suppose that the following assumptions hold.

Assumption 13: E (ww; | ¢, § < o) = ¢25,; where ¢? is unknown and 8;; is the
Kronecker delta.
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Assumption 15: lim E (Ir P,_}) = 0,
Under Assumption 13, Equation (29),
E@®, — 69, — 6°7 = o* P,

n—1s

holds as shown in 3.2.1.c. Since
Is)? = _E;s% = Tr(ss")
for any vector § = (s - - - §,),
E(||8, - e°|» =E @@, - 690, - 697)
= Tr [ E(f, — 6°)@, — °)7]
= Tr[E (6> P,_)]
= ¢2E (Tr P,_)

By Chebyshev’s inequality, for every & > 0,

E(|8, - 6°|? N
@281 = p i, - o0 2 0
S E(IrP,_ .

e S NI EY

Taking the limit of both sides of this inequality, under Assumption 15

0=tlimP(|6,-6°| 28 =0

for every ¢ > 0. So, A
im P (|8, —0°] =) =0

Hence, 9n is asymptotically consistent [1].

3.2.2.b Suppose that the following assumptions hold.

Assumption 9. a; = --- =q, = 0.

Assumption 13: E (ww; | ¢,, s < ) = 2§, where ¢ is unknown and 8y, 1

the Kronecker delta.
Assumption 16: {u,} is deterministic.
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Assumption 17. The input sequence {i,} is persistently exciting of order p +
1; i.e., there is a positive definite (p + 1) X (p + 1) matrix U and an integer N
such that for all n = N,
1 Pl =2
n
Under Assumption 7, we let ¢, := (u, ..., ,_,)". Then, by Assumption 17,
1

nPu—l = -—[}“

1
< —
Trf) = — 5

Let ¢ > 0, then we can find some positive number M = N such that 1/M < e. Then, since

TrU > 0, foranyn > M,
1
€ — =
Tr (P?l—'l) — n TrU -_— 8‘

Then, lim,.. E (Ir P,_;) = 0; i.e., Assumption 15 holds. Hence, as shown in 3.2.2.a, 9,, is
asymptotically consistent [1].

strong congistency:

Let F be the o-algebra generated by the past {y , u,, w,, s < k}. Sincew, = y, —
¢7-1 6°, F is also the o-algebra generated by {y,, ¢, 5 = k}. Also, let

Rn = E qskqsg
k=0

3.2.2.¢ Suppose the following assumptions hold. Let F, be the o-algebra generated by
{ys! ¢S! S S k}'

Assumption 8: ¢, = --- =¢, = 0.

Assumption 14: E(w,,; | F) =0, k=0, 1, ... (= Assumption 6)
Assumption 18: E (w2, | F) < o2,

Assumption 19: lim N\, R, = + oo,

Assumption 20: R

n =
IR R = el for all large n and some & > 0.

Under Assumption 7, we have the general ARX model,

Ye= @Y1 — " @V, thiu - + b U, + W,
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The LSE is obtained in Equation (28),

n—1 1

0 = 00 + Pn-—- E qskwk-i-l - 9 + Rn 1 Z ¢kwk+1
=0
where P, := R,'. Consider the term Y, —y $,W,,, in the above equation. Let ¢ . be the ith
component of the vector ¢,. For each i, define S; := 1, S/, := 1, and
Si:=1+ Y () n=1,2, ...
k=0

So, S, is adapted to F,. Now, define z} : = 0, and

n—1

; d’lrc wk+1
Z;:-Z-—S;—", n=1,2,...
k=0 k

fori = 1, ..., 2p + 2. Then z} is also adapted to F, and

i (bi n i
E(1+1| )_E(E Si I Si E(Wn+1IF|)—zn
Thus, {z,, F,} is a martingale. Then, by the martmgale convergence theorem,
- o Bk Wess
limzi =1lim Y —7—— exists and is finite a.s. (33)
noe nvo pn %

On the other hand, Assumption 19 implies

n—1

S =1+ Y (¢)? = +oo. (B4
k=0

Therefore, by Equations (33) and (34), we can apply Kronecker’s Lemma to get

n—~1

im —— Y ¢iwe =0, i=1,..,20+2 as.
noe n 1 £=0
Now,
n—1 n—=12p42
ey 1= 1+E(¢k)2 1+k221(¢1k)2_1+Tr2¢k95k
=0 J
=1+TrR,_), i=1,..,2p+2
So,
n—1 n—1
0=1Im Wey =6 W, =0
Hreoo u lk——E ¢)k ket lZL 1+ 7r (Rn—l) k=0 cbk kel
or 1 n—1
fim Y Wi =0

e 1+ TrR,) 15
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But, Equation (28) can be written as
. 1 -1 n—1
— fo —
b=+ | ®, D R x| 5 Ry L e

n—

Also, under Assumption 20, there is an integer N = 0 such that for any n = N,

n—1 < — ]

[ R -1 1
IrR,_, &

Hence, lim @,, = 9 a.s.

il
3.2.3 Consistency of The ELS
strong consistency:

3.2.3.a Define the polynomials
A@) =1+ az+ -+ + a,z%,
C@y:=1+cz+ -+ + 2%

and let ¢, = OV, .oy Ye1-p> Yis +ov » Upsi—ps €45 -+ Exe1—p). Suppose the following assumptions
hold.

Assumption 21 E (g, | 6,5 <k =0, k=0,1, ...
Assumption 22: E (e%,, | e, 58 = k) = a2,
Assumption 23: E (e}, | €, 5 < k) = 6.

Assumption 24: All the roots of the polynomials A(z) and C(z) are strictly outside
the closed unit disc.

1 —_—
C(e"™
where Re means real part and i := v —1.

Assumption 25: Re|

21 1 = 0 for all ¢,

Assumption 26. The input sequence {u} is adapted to F,.
n—1

Assumprion 27: lim — Y 64T = P, where P > 0.
k=0

—+co
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Then lim 9,, = §° a.s.

3.2.4 Consistency of The WLS

asymptotical consistency:
As shown in Equation (30) in 3.1.4,

1 n—1 1 n—1
Hn = §° + ( 1 EOlk(;kaSI)_ "'TI k—EO akd)kwk+1'

Under weak conditions, the sum (1/n—1) ¥,%25 oy, will converge to its expected value as
n approaches infinity, according to the law of large numbers. This expected value depends on

the correlation between the disturbance term w, and the vector ¢,. It is zero only if w, and ¢,
are uncorrelated [2].

strong consistency:

Let F, be the o-algebra generated by the past {y,, u,, w,, s < k}. Since w, = y, —
¢i-1 0°, F is also the o-algebra generated by {y,, ¢,, s < k}. Also let

= E_: d’k‘ﬁ-

3.2.2.¢ Suppose the following assumptions hold. Let F, be the o-algebra generated by
{))3" (bs: S < k}

Assumption 8 ¢y = --- = ¢, = 0.
Assumption 14: E(w,,, | F) =0, k=0, 1, ... (= Assumption 6)
Assumption 18: E (wi, | F) < o2

Assumption 28: lim \,;, S, = + o,

ntin n
n—=co

Assumption 29. -?giis—,- = ¢l for all large n and some & > 0.

For each i, define S} := 1, 8§, := 1, and

n

Si=14 Y afe)? n=1,2, ...

k=0
Also, define 7, := 0, and
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-1 '
-1 HX: (»b;c wk+1

Z, = n=1,2,..

¥ »
k=0 Sk

fori =1, ..., 2p + 2. Then, by a similar procedure as shown in 3.2.2.c for the strong
consistency of the LSE, it can be shown that lim 0, = §° a.s.

3.2.5 Consistency of The PEE

3.2.5.a Suppose the following assumption holds,
Assumption 14: E (W | F) = 0, k=0, 1, ... (= Assumption 6)
Then, as shown in 2.2.5, PEE is same as LSE.
strong consistency:
3.2.5.b Define the polynomials
A@ :=1+az+ --- + q,2?,
C@):=14+cz+ --- +c,z%,
and suppose the following assumptions hold.
Assumption 51 by = --- =b, = 0.
Assumption 21: E(g, | e, <k =0, k=0,1, ...

Assumption 22: E (e}, | &,,5 = k) = ¢2.

Il
&

Assumption 23: E (e}, | ¢,5 k)

Assumption 24: All the roots of the polynomials A(z) and C(z) are strictly outside
the closed unit disc.

Assumption 30: ¢_, = ++- =g =0,andy_,= -+ =y, =0
Under Assumption 5, we have the ARMA model,

P P
Yt E &Y = E i &
=1 =1

or

Ye= T Y1 T 0 T G Yt &t G e + Cp Exp- (35)
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Let
. T 2
°i=(=ay ..., G, ¢y, ..., )} € R%,

Wir1 - Erars

and
- T
B 2= Vo oes Yir1-ps Eip oo Ees1—p) -

Then, the ARMAX model can be written as Equation (3), which is
Yer1 = 65 0° + Weys.
Using the shift operator ¢, Equation (35) above can be written as

Vo= —@q Ty o - X e - Y A o ? &
So,

Alg™ Ny = Clg™ Ve (36)

where
Agh:=14+ag'+ --- + a,q7?,

CgH:=1+¢cgt+ --- + g

Let {, z*} and {g, Z*} be the power series such that

= Cz) ® A(z)
hz® = and g z¥:= (37
éo § A(2) ;Eo f C@)
However, A(z} and ((2) are unknown. So, we define the polynomials
A@Q =1+ &z + --- + 8,22,
C@)y:=1+2ez+ -+ + &7
where A
By o= (1, ..., =8, &y, ..., 8)T € © C R2,
Also, for 6 € O, let {h, z*} and {2, z*} be the power series
> C) ® A(z)
h o and i, Zk:= —_—. (38)
20 @) L&
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Note that /i, = £, = 1.
Suppose the following assumption holds.

Assumprion 31: © is a compact set such that for every § in O, all roots of the
polynomials A(z) and ((z) are strictly outside the unit disc.

Now, from Equation (36),

A(@) " "
&= T T L&Y = L by (39)
and C‘( ) j=0 Jj=0
z n . . n .
W = "2/ &, = nq & = hu—‘ &;.
A(@) j;) ; = ;Y
So,
yﬂlﬂ—l(e) =E 0’,; I Voo 8§ = H — 1)
=E(Y hgly,s<n—1)
j=0
n—1 . .
=E( E h”—fgj_l_ hoenl Vs § =1 — 1)
j=0
n—1 N
:E( E ku—jajlyssssn_ 1)+E(8n|ysassn— 1)
j=0
=E(Y hyg—loe|ys<n—1)
=0
mE(yn—Sulys:S =N — 1)
= E(y" - Z gn—j)’j' Vo § € n — 1)
j=0
n—1
= F w E_Ogn—j}’j_go}’n|}’s,sSn—l)
=
n—1
== E gﬂ—j yj
j=0
Hence

k-1

&
Ve — 5’k|k~1 =Y + E gn—j Y = E 8uj Y.
J=0 j=0

So, the PEE 8, is 0 € © that will minimize L,(§) below.

L6 := kgl O — j‘}k|k—1)2
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Let V(0) := (1/nm)L,. Then the PEE minimizes

1 = 1 n k
V.(0) = ‘_‘kzl: O — j’k|k—1)2 = Y, (E §,,__jyjz (40)

n k=1 j=0

Now, in order to show the a.s. convergence of the estimate, we first show that

1 n oo
hm - E ymym—l = 02 E h‘k hk+l a.8.
.00 m=1 k=0
Since Y = E h’j wm—_r’
=
1 n 1 n m m—1I
M E Yu¥nay = — E (Z h’j gm—')(z hk gm—l—k)
n m=0 n m=0 j=0 k=0
1 " "m m—1
= - E (E Z hj h’k 8m-j am—l—k)
n me=Q j=0 k=0
Since
O=k=m-—-I=n—-1 and 0=j<m<=<n, 41)

we can rewrite this as
I n 1 r—=l n n
Z ym ym--l = 7 E E hj hk E 8m—j arxx—l—k

n m=0 k=0 j=0 m=0

However, as shown in Equation (41), j < mand k + I < m. So,

1 n n—I n 1 n
B E ym ym—l = E E kj h’k n E gm ] am—l—k' (42)
m=0 k=0 =0 m=max{j, k+hH

Now, for [z| = 1, C(z) # 0 and A(z) # 0. So, by the definition given in Equation
(37), and by Assumption 24, Y}, %_, A, 2 converges for |z] < 1. Let

v 1= lim sup {/Ihj] .

J=
Then
z] =1 < R= -1—
Y

S0,
0 <y <1,
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where R is the radius of convergence. Now, there exists J such that j = J implies

VIn| < v

Ihjl < 'Yi-

or

Let Q = max{|#| | j =1, ..., J—1}. Then we can find a constant o« > 0 such that
B = Q=ay/ and v/ < o4’ (43)

Then || < oy’ forallj. Also, by the Schwarz inequality,

1 n 1 n n
| ...—n_ Z sm—j ‘C“a'u—t‘—k]2 = __n-f E |“31uv1—~j|2 Z l“-:"m—l--k|2
me=max(f, k+1 m=1 m=1
1 n
=4 "}TQ— ( E I & I 2)2
SO, me=]
1 n 1 n
I __?’l— E ) Sn—y Ep—i-k = T Z 83: =M (44)
m=max(f, k+{} m=1

for some random constant M. So,

1 i n—I n 1 "
I L E Y ym—n!' = Z I E hj hk T Z 8m—j 8:}1-I—k|2
n m=0 k =0 R m=max(f, k+1)

n—i n

n
1
= E ” E hj hk|2 l T E am-v-j em—l—klz]
k=0 Jj=0 m=max{f, k+1)
n—l "

" 1
= E [ E ]hj|2 |Ae)? | - 7 E Em—j Epi—i|’]
Jj=0

k=0 m=max({f, k+

By Equations (43) and (44),

I n=I{ n

I_—_ Eoymym—l|2 = Z E |a2,yj,},k|2M_

noo= k=0 j=0

So, there is a constant M such that

1 = .
| — E Yo ym-—-ll =M (45)

n m=0

n — 2
Sk ‘Sk—m g 51;10

Now, consider X, := Y, T . Under Assumptions 21 and 22,
k=0

E (&ps18i1-1 | b § S H) = Uzakj
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where §; is the Kronecker delta. Therefore, as shown in 3.1.2.b,

n

lim—— Y ee¢._,=0¢%, as. (46)
k=0

H—+Co

Then, by Equations (42) and (45),

n n=i n 1 n
lim E I ym—l = hm E E h:r k.ic (lim E 'Sm—j 8:::-—1—1() a.5.
n=co mus( neoo k=0 =0 o N m=max(j, k+D

Then, by Equation (46), only the terms with j = k + [ are non-zero. Hence,

i

1 n n—
lim—— E Yoo Yt = lim 02 E
0

100 me= Hrroo k=0

hk h’k+l = (TZ E hk hk+l da.8. (47)
k=0

Now, rewriting Equation (40), we get

1

n gj 2 Yiej Ve
k

1]

b=

Vi =

Ir~
M?-

(.

0

-~
Il

Since, 0 =j = k=n0<I<k<nk-0<kj<k-nandk—0 < k—[ < k—n, by
letting m = max{k, j}, it can be rewritten

-

-
=

v.0) =

3 b
7 01
—

gj Bk Y ym—fj—k|

=)= =]~
b
I
Q
bl
Ii
o

1=
T =

n
A e
gj 8k E Y ym—|j—k|'
0 1

=0 m=
Now, under Assumption 29, 3, %_, 2, 2" converges for |z| for all § € 6. So, by the same
procedure which is used to obtain Equation (40), we can find constants § and 0 < 5 < 1 such

that |g| < B for all § € ©. Then, by Equation (42) and Schwarz inequality,

1 n n . .
Y, X 18%int|2 M

o =0 k=0

[V.0)| =

Then, by Equation (44),

n hn

. ) i . . . 1
lim V;J(a) = lim E Z gj &y lim _;l'_““ Y ym—l}'-'kl'
1

oo nwea j=0 k=0 oo m=

n n

= lim }, Eoé’j & (o f_o‘/: Bohy ;) as.

aoa j=0
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=q? ¥
=0
Hence, the PEE 9,, converges to © a.s. [1].

The consistency of the RPEM:

As same as for the off-line PEE, the RPEM gives convergence under very general
conditions [2].

3.3. Efficiency
The efficiency of the estimators can be compared using the following definition.

Definition: The Fisher information matrix is the p X p matrix I(u,6) with elements

dln p(y|u,0) dln p(y|u,6)
a6, a6,

J

Lw,b) := f PO | u,6)dy.

The Cramér-Rao Inequality

Let 8 be any unbiased estimator. Then
G, H17' < Cov(® | u, 6) forall § € ©.

The estimator 4 is efficient if [I(u, )] = Cov(@ | u, ). Now, consider the following
estimators for the model given in Equation (3)

_ 4T go
Yer1 = qbk 6° + Wir1-
Let
e [ _ T — p2
Ci=(-ay, .., —a,b, .., b) € 6 =R?,
Wi »= €1 & T == + €, &, T &4y,
and
. T
d’k [ (yks T yk+1—p! U, ..., uk-z—l—p) .

Then, the ARMAX model can be written as Equation (3), which is

Yer1 = &3 0° + Witr-
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3.3.1 Efficiency of The MLE

3.3.1.a Suppose the following assumptions hold.
Assumption 2: ¢, is independent of {w,, s = k+1} fork =0, 1, ...
Assumption 3: pi._1(éy | b0, -.., 4_i, Y1y +.., ¥5) does not depend on 8.

Assumption 4: {w,} is independently normally distributed with the mean 0 and
the variance o

Then, as shown in 2.2.1.b, the MLE coincides with the LSE.
3.2.1.b Suppose the following assumptions hold.

Assumption 4: {w} is independently normally distributed with the mean 0 and
the variance o 2.

Assumption 5: by = -+ = b, =0,

14

Then, as shown in 2.2.1.¢, the MLE coincides with the PEE.

3.3.2 Efficiency of The LSE

3.3.2.a Suppose that the following assumptions hold.

Assumption 4: {w} is independently normally distributed with the mean 0 and
the variance o?

Assumption 8. ¢, = --- =¢, = 0.

Assumption 9. a, = --- =aqa, = 0.

Assumption 16: {u,} is deterministic.
Under Assumptions 8 and 9, ¢, 1= (i, ..., ,_,)". Also, since E (W,,, | ¢,, § < o) = 0 under
the assumptions above, §, is unbiased (See 3.1.2.a above), and E W | by, § < ) = 0%,
where o2 is unknown and §, ; 18 the Kronecker delta. Let I (°) be the Fisher information
matrix. Then by the Cramér-Rao Inequality stated above,

2" < E@, - 69, ~ 6°)F

Also, from Bquation (28) in 3.1.2., E (8, — °)(8, — 6°)" = 62 P,_,. So,
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{I (60)]_1 = 02 Pn—l

Now, we need to show that the equality holds. Since {w.}~N(O, ¢?),
n 1 _— _ ¢T_ 00 2
]_[ (y k k—1 )

po" | 6% = exp [ 1,
=1 V 270? 207
2 lgon _ N N e
Inpy"| 6° = -5 nQwo?) k=21: 757
dln p(y" | 8°) " T o o Wil
00‘; - k; — 1 )y, = k=Z1 T e
din py" | 6°) _ i Wi Wy
a9, k=0 o’

So, the information matrix I(#°) is

1) o= LRPLLOD BPOTLOY oy

80" a6,
n~1 W U -1 w u
k+1 M ki I+1 I—,r
=E’(} E )
k=0 o’ =0
I n—1
— 2
= 7 E O Uy Uy
k=0
1 n—1
= 0. kZU ukwt uk—}
1 -
= O' P nil (48)

Therefore, [7 (6°)]™' = E (§, — 8°)(d, — 6°)". Hence, 9, is efficient [1].

*vn

3.3.3 Efficiency of The ELS

3.3.3.a Suppose that the following assumptions hold.

Assumption 4: {w,} is independently normally distributed with the mean 0 and
the variance o2

Assumption 8: ¢, = --- =¢, = 0.
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Assumption 9: a; = --- =q, = 0.
Assumption 16: {u} is deterministic.

Under Assumptions 8 and 9, ¢, := (i, ..., u,_)7 = &k. Hence, as shown in 3.3.2.a, ?),, is
efficient.

3.3.4 Efficiency of The WLS

3.3.4.a Suppose that the following assumptions hold.

Assumption 4: {w,} is independently normally distributed with the mean 0 and
the variance o

Assumption 8 ¢, = --- = ¢, = 0.
Assumption 91 a; = -+ =q, = (.
Assumption 16: {u,} is deterministic.

As shown in Equation (48) in 3.3.2.a,

1
-1
02 P n—1+

4,;0%)=

Also, as shown in Equation (31) in 3.1.4.b, since 0 < o, < 1,
E (én - 60)(9,; - GO)T = ll)'2 Un—l = 0‘2P

n—1

where P,_, = (Y42 0,40~ and Uy = (X420 D™ So, unless o, = 1 forall k = 0,
1, ... (i.e., the WLS is just the LSE), 6, is not efficient.

3.3.5 Efficiency of The PEE
3.3.5.a Suppose the following assumption holds.

Assumption 14: E(wyy, | F) =0, k=0, 1, ... (= Assumption 6)

Then, as shown in 2.2.4, PEE is same as LSE.
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4. Examples

Example 1: Suppose that
Verr = —a U — gt &y, K=0,1, ...

where y,, i, € R; {g3~N(0,0%, {u}~Np,6% and are iid; &, = 0; and {g} is independent
of {u}. Seta® = 0.

(a) Assume that ¢ is known;
Let ¢, := w, 6 := —a, and w,,, := —cg, + g,,, so that we have

Yir1 = O + Wiy

The MLE: Since {u,} doesn’t depend on 6, maximizing the likelihood function L is same as
maximizing
pg(ys: § = n) = q?|0(yl I uo)qgu(}’a | Uy, Uy, yl) T Q’ﬁpa—l@n | Uoy --vs Upy_1s Y1y oy yn—})
Now, we can show that
k
Err1 = E ck_j@jﬂ — G u),

i=0

or k-1

_ k=1—j
Vw1 =0 — ¢ E c O — O u) + 544,
i=0

for £ = 1. The proof can be done by induction. We know

812}71_0”0.

Assume that -1
& = Y, Ck_l_J(YjH — 0 u).
i=0 :
Then

Vesr = 0 g + W

= 9”k - CSk + Sk'l'l

k-1

_ k1)

—9“1{—0_2%6‘ et — 1) + &y,
o
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k=1
Yirr -0 + ¢ ¥ Ck_l_j(yjﬂ — 0w

1 =
j=0

k
= _EO Ck_j(yjﬂ — 0 u).
i=

Thus, fork = 1,

qz+1|k0’k+l I Up, ooy Uy Y15 o0vy yk)

k1
= P(B W — ¢ Zock_l—j T 8 uj) + 8y I Uos vy Uy Yis -5 Vi
=
= P(8k+1 I Uyy «.vy uk: Yis -1y yk)s
and for k = 0,
Py, | ug) = P(0 uy + &) = P(gy).
Then, since {g,} ~ N(0,0%),
n—1 n—1
Py, 8) = [ e) = (27(02)—"1237{13[“‘2“07 E & 41]
S0, the MLE maximizes
1 n—1 k
M, = Q2uo?) "’ZGXP[—-—Q Y AX 0 — 0w
k=0 j=0
1 \ 1 n—1 ot ,
M, = 270 = oy T (T ¢y — 0 1))
k=0 j=0
oln M, 1 ko .
—5 =~ LI c“u,-)(,):o ¢ Hpua = B )] = 0
k=0 = j=
n—1i k )
) [(): <+ ) E ¢T3 = L ) =0
n—1 n—-1
) [(Z 7 u)( E C"")’,H)] x [(E C""“)(E c*7 u,6)]
k=0 j=0 k=0 j=0

n—]1

E [(Z c“7 u)( E ¢y

Gn =

n—1

k
(X 7wy
=0

k=0
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or

n—1

k-1 k-1
L [+ L "7 w0 + EO ¢ 3301
A = J= J=

f =

n—1 k

E (u, + E ¢ uj)2
k=0 j=0

If ¢ = O then this is same as the LSE. We can obtain the MLE recursively.

k
b= Y c7u, fork=0,1,2,..

j=0
k £
j}k+1 = ck_J yj+15 for k = 05 15 23 e
7=0
and R
R,=Y ¢ forn=0,1,2, ..
k=0
Then we get n—1
b, = R;L E D Vi1
or k=0

Let

Now, we can refer to the calculation done in 2.2.2. below, in which we started from Equation

(5), which is

where R, = }, 6%, and obtained Equation (8),
k=0

@n+l = an + anbu(yn-i-l - 0556,9,

where P, := R>! and
P

n~1

P=—
" I+¢£Pn—l ;)

Replacing yk-i-l by ?k+13 Pu by f)m ¢n by &’n! we have

k
Ver1 = ¢ E ck 1 Vo1 + For1 = e + Fiyrs

Jj=0
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k-1
dr=c Y 'V u+ u = chp, + u,

j=0
and A . o o
6n+1 = 611 + Piz¢n@n+1 - ;11'611)5

where B, := R;'. P, is obtained recursively by

- Pn-]

P R
D Y e

The ILSE: Using Equation (4) in 2.2.2., we get
n—1i

n—1
h — 2y~1
6, = (E 750 N )75 A
k=0 k=0
Also, the recursive estimator is

Bn-{-l = en + Pn ntt Gnun)a

where H P
P=(Y u)'=
k=0

nee]

1 + Pn—lurzx ’

as shown in Equations (8) and (9). This estimate is biased and converges to -¢/(c? + 1) as
shown in 3.1.2.b.

The PEE:
Yirrtl® = E Qs | Yoo 4y § < K)
=E@u+ Wy | Ve Uy § < k)
=E@u —ce + gy | Yoo U, § < K)
=0, —CE(g | Vs Uy, § SK) + E(&py | Voo U, § < k)
=0u ~ cE (g |y, u,s <Kk
since E (&yy | Yy Uy, § < k) = E (8,,)) = 0. Now, we have shown that

k-1

E (gk | Vos Ugy § = k) =g, = Zo ck 17 ¢2 N g uj).
j=
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So, k-1
j}k+1|k(0) = 0w — Eo Cknj()’jﬂ -0 uj)'
jﬁ
n—1

k1
L9 = kEO Oerr — 0 1y — Eﬂ ¢y — 0 w))?
= =

n—

L®) =Y (X "0 — 8 w))?

k=0  j=0

aL n=1 k . k .
=2 L (X u Y o —0u)]l =0
=0 j=0 j=0

But, the solution to the above equation is the same as the solution for the equation dln M,/30 =
0 for the MLE. So, the PEE is same as the MLE for this system.

Simulation: (See Figure 1a.)

The simulation has been done using the LSE and the MLE (= the PEE for this system)
for a parameter g, with the true parameter values a® = 0 and ¢® = 0.8. The system is

Yerr = —(Ou, — 0.8g, + &4,
where {g.} ~N(0,1), {u,}~N(1,1); or
Yerr = 0° by + Wiy,
where §° = —g° and w,,; = —0.8¢, + ¢,,. The combinations of two different initial

parameter values, 6, = —0.5 and 0; and two different initial values for Py, P, = 0.01 and 1.0,
were used.

In general, the MLE (or the PEE) seems to behave in a more stable manner, and to
converge to the true parameter quicker than the LSE. This is not surprising since the value of
¢ is in the algorithm for the MLE, while the LSE ignores it.

Also, the size of P, effects the speed of convergence, as will be discussed later using
Example 2 [2].

(b) Assume ¢ is unknown;
Let ¢ 1= (i, )7, 0 := (—a, —¢)", and w,,, = g,,1, k = 0, 1, ... so that we have

Vir1 = &3 8 + W1
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The MLE: The following assumptions hold:

Assumption 4: {w,} is independently normally distributed with the mean 0 and the
variance o°.

Assumption 2: ¢, is independent of {w,, s = k+1} fork =0, 1, ...
Assumption 3: ply (dy | o, -..s Dty Y1y ..., ¥ ) does not depend on 8.

So, as shown in 2.2.1.b, the MLE coincides with the LSE.
The ELS: Let &, :=y, — &L, O, where ¢, := (u, 8)". Define 2, = (¥ $4D!, then
k()

9n+1 = 91; + Pnéno)ni—l - (}\5’1; grz)
where

5 P

_ n—1

i s
The PEE: Since E (W, | ¥,, ¢, § = k) = 0, Assumption 6 holds. Hence, as shown in
2.2.5.a, the PEE is just the LSE. However, since ¢, = (i, &) is not available due to g, we
need to use the recursive prediction error method (RPEM) as follows (See 2.2.5.):
Let §; := g, and let ¢, := (u,, {(B,_). We recursively obtain @, and {, as below.
el = t) oF + ¢7,
516 = Yuur ~ 87 8,

where 8, = (—a(n), —e@)’. Then,

and

ara--i-].(an) = 9rt + ﬁn+1@n+l§-n+l(an)

where P_, | is obtained recursively by
Y P
P = o

i 1+ 5954.1 Pn P

Simulation: (See Figure 1b.)

The simulation has been done using the ELS and the RPEM for parameters a and ¢, with
the true parameter values ¢® = 0 and ¢® = 0.8. The system is the same as in Example 1(a);
ie.,

Yeer = —(Ou, — 0.8, + &4y,
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where {e;} ~N(0,1), {u,}~N(1,1). However, here we define ° := (—a®, —c°) so that we
have

Verr = 0 1 + Wiy,
where W,,; = &.,. The combinations of two different initial parameter values, §, = (—0.5,
—0.3) and (0, —0.8); and two different initial values for P, = pI, p = 0.01 and 1.0, were used.
For both estimators, small p-value seems to give a steady convergence. However, with
a large p-value, the ELS and the RPEM usually converge with different speeds, and the

estimator which converges quicker depends on the data generated during run-time on each
implementation.

Example 2: Suppose that

YWtay,=bu_,+e, k=01, ..
where y,, i, € R; {i} and {g,} are independently normally distributed with the mean 0 and the
variance 1; and {¢,} is independent of {u,}.

Let ¢, := (y, ), 8 := (~a, b)", and w, := &,. Then the system can be expressed as

Yeer = 0% 0 + Weer.
The MLE: Note that Assumption 4 holds since {w,} is independently normally distributed with

the mean O and the variance 1. Also, since y, is independent of {w,, s = k+1} fork = 0, 1,
...; S0 18 @,; i.e., Assumption 2 holds. Now,

Pfczk—l(d’k | bos woes Bty Y15 s ¥ = Pf.-|k-1(uk | bos vs Bt Yis o5 ¥
= Pf:[k—l(ak-z-l | ¢03 Tt d)k—la Yis +oes yk)
since u, = (Vg1 + @ Y — &.41)/b. Hence, piy (¢ | Do, -..s Sy, Y1 --., ¥,) does not depend
on f; i.e., Assumption 3 holds. Therefore, as shown in 2.2.1.b, the MLE coincides with the

LSE.

The I.SE: Using Equation (4) in 2.2.2., we get

n—1 el

b, = (LoD ¥ bdens
k=20 k=0

Also, the recursive estimator is

Bn+l = Gn + Pngbn el Qb;{e,,)
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where P,
P=————
1+ d)gpuwiqﬁn
as shown in Equations (8) and (9).
The PEE: Since
E (wk-!-l | ysa ¢s> 5= k) =E (8k+1) = 09
Assumption 5 holds. Hence, according to 2.2.5.a, the PEE coincides with the LSE.
Simulation: (See Figures 2a and 2b)

The simulation has been done using the LSE for parameter (a, b) with the true parameter
value 6° = (a°, £°) = (0.8, 1.0). The system is

yk - O'Syk—l = 1.0uk_1 + gk? k = 0, 1, ees

where {1} ~N(0,1) and {&,;} ~N(0,1). Let P, = pI. The behavior of the estimators change
according to the values for P,

For 0, = (0, 0), given p = 1, the parameter estimates converge quickly especially at the
early stage. (See Figure 2a.) However, when the true value of the parameter is given as the
initial value, the behavior of the parameter estimates that were obtained with large p-value kept
changing in almost the same manner as when 8, was different than the true value. On the other
hand, the parameter estimates obtained with small p-values stayed close to the true parameter
value when the true parameter value is given [2].

References

[1] P.R. Kumar and P. Varaiya (1986), Stochastic Systems: Estimation, Identification, and Adaptive Control.
2] L. Ljung and T. Sdderstrom (1983}, Theory and Practice of Recursive Identification
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The LSE and the MLE = the PEE with Different Initial P,-values
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Figure 1.a

Parameter estimates for Example 1(a). P, = p.



The ELS and the RPEM with Different Initial P,-values

b, = (—0.5, —0.3)%, p = .01

b, = (—0.5, 0.3, p = 1
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Figure 1.b

Parameter estimates for Example 1(b). P, = pl, 8° = (—a°, —¢°)7 = (0, —0.8)".



The LSE with Different Initial P-values
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Figure 2.a

Parameter estimates for Example 2. Initial values were 8, = (0, 0)7, P, = ol.



The LSE with Different Initial Py-values
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Parameter estimates for Example 2. Initial values were §, = (0.8, 1.0)7, P, = pl.



Attachments



% &k kkd Exa_[nple 1 ewEkhew G

%

% This program simulates the system

%

% y{k+1l) = theta*u(k) + wi(k+l), k = 0, 1,

%

% where

%

¥ w(l) = v{1),

¥ wik+l) = -c*v(k) + v(k+1), k =1, 2, ...,
£ vi(k), ulk) are scalars,

% u{k)} is N(mull, cigmaU} and is iid,

¥ vi{k)} is N(0,cigmaV) and is iid, and

$ {v(kx)} is independent of f{u(k)}.

B o m e e e s o o o e e e e e e e e e o e e e
$ Initialization

t0 = dinput{’*%* Input initial time => )
tf = input{’'**%* Input final time => ) ;

dt = input{’** Input time step dt =» )

t = t0:4t:t£;
npts = length({t) - 1;

vy = zeros(l,npts);
muU = input (' ** Input the mean of u => ');
varlU = input (' ** Input the variance of u => ’);

u = randn(l,npts)*sqgrt(varlU} + mul;

varV = input(’** Input the variance of v => ');
v = randn(l,npts)*sqgrt (varv) ;

= input(’** Tnput a constant a => ')
¢ = input (' ** Input a constant ¢ => ‘)

% ___________________________________________________________________
% Simulation: of the real system.
% ___________________________________________________________________
%
% HNote: u(k) and theta#(:,k) represent u(k-1) and thetalk-1),
% respectively, in the formula in paper.
v{l) = -a*u(l) + v(1);
for k=l:npts-1,
yvi{k+1l) = -a*u(k+l) - c*vi{k) + v{ktl);
end
% ___________________________________________________________________

clg;
tt = t{l:npts+l);



for k=1:2

if k == 1
a0 = input (’** Input a(0) for the 1st case => ');
else
al = a;
end
for j=1:2

PO = input ('** Input P(0) for the 1st case => ');

A i i L L T ¥
% Recursive estimation of theta, using the LSE

R R I e %
thetal = zeros(l,npts+l};

thetal(l) = -a0;

thetal{2) = thetai{l} + PO*u(l)*(y{l)-u(l)*thetal{l)};

P = PO;

for n = 1:npts-1
P = PB/{1 + P * uln+l)*2);
thetal (n+2) = thetal (n+l) + P*u(n+l) * (y{n+1) - thetal{(n+l) * u(n+i});

end
L e e T %
% Recursive estimation of theta, using the MLE = the PEE
T T %

theta? = zeros(l,npts+l};

P = PO;
va = u{l);
vy = yi{1);
thetaz{l) = -a0;
theta2({2) = theta2(l) + P*uu*(yy-uu);
for n = l:npte-1
uu = o¥*uu + u(n+l) ;
vy o= odyy + yvi(n+l) ;

P =P/ (1 + P * uu*2):
theta2 (n+2) = theta2 (n+l) + P*uur (yy-theta2 (n+l) *uu) ;
end

if k+j == 2
subplot(2,2,1);

elgeif k == 1 & j
subplot(2,2,2);

elgeif k == 2 & j == 1
subplot(2,2,3);

else
subplot{2,2,4);

end

plot (tt,a-tt+tt,’-’,tt, -thetal,’'-’,tt, -theta2,’--");

axig{[0 npts -.5 1.5]);

end
end

print exltemp.ps;



clg;
for k=1:2
if k == 1
a0 = input{’** Input a{0) for the 2nd case => '};
¢0 = input{’** Input c{0) for the 2nd case => '};
else
al = a;
c0 = C;
end

thetall0 = [-al0, -c0]‘;
for j=1:2

PO = input(’** Input P{0) for the 2nd case => '};

§ e mmmmmmmm e e e e e e oo %
% Recursive estimation of theta, using the RPEM
§ m = mm e e e e e e e e e e . %

theta3l = zeros(2,npts+1);

P = PO*eye(2};

theta3(:,1) = thetal0;

phi = [u(1},01’;

dd = phi;

d = y(1) - phi‘*theta3(:,1);

P = P/ (1+dd’ *P*dd) ;

theta2(:,2) = theta3(:,1) + P*dd+*d;
d = y(1) - phi’*theta3(:,2);

for n = 1l:npts-1
phi = [u(n+i),d]’;
dd = (-theta2(2,n+1})*dd’ + phi‘}’;
d = yv{n+l) - phi’*theta’(:,n+l);
P = P/ (1+dd’ *p*dqd) ;

theta3 (:,n+2) = theta3(:,n+1} + P*dd*d;

d = y(n+l) - phi’*theta3(:,n+2);
end
Lt T USSR %
% Recursive estimation of theta, using the ELS
L R R e R T %

theta4 = zeros{2,npts+l);

theta4(:,1) = thetal(;
phi = [u(1),0]1’;
P = PQ*eye(2);

thetad (:,2) = theta4(:,1) + P*phi*(y(l) - phi/*thetas4(:,1)};
for n = 1l:npts-1

ee = y{n) - phi’*theta4({:,n+l);

phi = [u{n+l) ,ee]’;

P = P/{(1 + phi’*P*phi);

theta4 (:,n+2) = theta4 (:,n+l) + P*phi#* (y(n+1) - phi’*thetad (:,n+l));
end



if k+j == 2
gubplot (2,2,1)

elgeif k == 1 & j
subplot(2,2,2)

elseif k==2 & J
subplot{2,2,3)

else
subplot(2,2,4) ;

end

axis ([0 npts -.5 c*1

I
I
r

hold;

.51);

plot{tt,a-tt+tt,’ -, tt,c-tb+tt,’-");

plot (tt, -theta3(1,:),"-’,tt, -theta3(2,:),"’ -
plot (tt, -thetad4(1,:),'--',tt,-thetad(2,:},"

hold off;

end

end

Y
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§ kkkkk Example 2 kkwskk &
This program simulates the system
yv(k) + a*y{k-1) = b*u(k-1) + e{k), k = 0, 1,
where '

v(k), u(k) are scalars,
uf{k)} is N(0,1) and is iid,
elk)} is N(0,1) and is iid, and
ulk) } is independent of {e(k)}.
Let
phi (k) = (y(k),u(k})’,
theta = (-a,b)’, and
wik) = e(k)
g0 that we have a system
v{k) = phi(k-1}'*theta + wi(k)

af o dS A A ol o dP dO AP OB Ot O dF dO P of I° 90 &

___________________________________________________________________ %
Initialization
t0 = input (** Input initial time => ) ;
tf = inmput (’** Input final time => y;
dt = input (’** Input time step dt => ") ;
£ = t0:dt:tf;
npte = length(t) - 1;
vy = zeros(l,npts);
u = randn(l,npts);
w = randn(l,npts) ;
trueTheta = input{’** Input the true parameter vector theta => '};
trueTheta = trueTheta’;
fprintf (’\n-- For Estimation --\n’};
v0 = input (’/** Input y{0) => 7};
L LT T T F v pu e %
% Simulation: of the real system.
R L L T T e AP ey SV R %

% Note: u(k) represents u(k-1l) in the formula in paper.

phi = [¥0, u(l)1’;
v{l) = phi'*trueTheta + w(l);
for k=1l:npts-1
phi = [y(k),u(k+1}]’;
v{k+l) = phi’*trueTheta + w(k+1};
end

tt = t(l:npts+l);



clg;
axis ([0 npts -1 1.51);
hold;
plot (tt, -trueTheta (1) -tt+tt,’-’,tt,trueTheta (2) -tt+tt, ' -");
dene = 0;
i = 1,‘
while ~done
alpha = input(’** Input alpha for P{0) => '};
PO = alpha*eye(2);

% DNote: theta(:,k}) represents theta(k-1) in the formula in paper.
theta = zeros(2,npts+l);

theta(:,1} = [0,0]';
phi = [y0, u(1)l*;
theta(:,2) = theta(:,1) + PO*phi* (y(1)-phi’#*theta(:,1});

P = PO;
for n = l:npts-1

phi = [y(n),u(n+1)]’;

P = P/{1 + phi’*P*phi) ;

theta(:,n+2) = theta(:,n+l) + P*phi*{y{(n+l) -phi’*theta(:,n+l));
end

if i == 1
str
elseif
str
elgeif
str
else i
str
end
plot(tt, -theta(l, :),str,tt,theta(2,:),str);
i = i+1,‘

v i P11
=1 ~ N =
LI}
. -
S~ D
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r

done = input(’** Input 1 if done, 0 if not => 7);
end
xlabel (‘time t'); vliabel{’theta’};

hold off;
print ex2temp.ps;



clg;
axis ([0 npts -1 1.51);
held;
plot (tt, -trueTheta (1) -tt+tt,’-’, tt, trueTheta (2} -tt+tt, ' -") ;
done = 0;
i = 1;
while ~done
alpha = input(’'** Input alpha for P(0) => ')};
PO = alpha*eye(2};

% Recursive estimation of theta, using the LSE with thetal0 = the
% true theta value,

% DNote: theta(:,k) represents theta(k-1) in the formula in paper.
theta = zeros(2,npts+l);

theta(:,1) = trueTheta;
phi = [y0, u(1)]’;
theta(:,2) = theta(:,1} + PO*phi*{y (1) -phi’*thetal{:,1});

P = PO;
for n = 1l:npts-1

phi = [y(n),u{n+1}1’;

P = /(1 + phi’*P*phi);

theta(:,n+2) = theta{:,n+l) + P*phi*{(y(n+l)-phi’*theta{:,n+i)};
end

if

=
1]
1l
[

str
elseif

str
elseif

str
else i

astr
end
plot(tt,-theta(l,:),str, tt,theta(2,:), str);
i = i+l :

~ 1
LI ||
~
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v
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done = input{’** Input 1 if done, 0 if not =» '};
end

xlabel (‘time t’)}; ylabel ('theta’);
hold off;



